-
1
-
-
33748118578
-
A polynomial quantum algorithm for approximating the Jones polynomial
-
D. AHARONOV, V. JONES, AND Z. LANDAU, A polynomial quantum algorithm for approximating the Jones polynomial, in Proceedings of the 38th Annual ACM Symposium on Theory of Computing, 2006, pp. 427-436.
-
(2006)
Proceedings of the 38th Annual ACM Symposium on Theory of Computing
, pp. 427-436
-
-
Aharonov, D.1
Jones, V.2
Landau, Z.3
-
2
-
-
74049084945
-
Quantum algorithms for Simon's problem over non- abelian groups
-
G. ALAGIĆ, C. MOORE, AND A. RUSSELL, Quantum algorithms for Simon's problem over non- abelian groups, ACM Trans. Algorithms, 6 (2009).
-
(2009)
ACM Trans. Algorithms
, vol.6
-
-
Alagić, G.1
Moore, C.2
Russell, A.3
-
3
-
-
51249162954
-
Hammersley's interacting particle process and longest increasing subsequences
-
D. ALDOUS AND P. DIACONIS, Hammersley's interacting particle process and longest increasing subsequences, Probab. Theory Related Fields, 103 (1995), pp. 199-213.
-
(1995)
Probab. Theory Related Fields
, vol.103
, pp. 199-213
-
-
Aldous, D.1
Diaconis, P.2
-
4
-
-
0345064820
-
On the complexity of canonical labeling of strongly regular graphs
-
L. BABAI, On the complexity of canonical labeling of strongly regular graphs, SIAM J. Comput., 9 (1980), pp. 212-216.
-
(1980)
SIAM J. Comput.
, vol.9
, pp. 212-216
-
-
Babai, L.1
-
6
-
-
33748603175
-
From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups
-
D. BACON, A. CHILDS, AND W. VAN DAM, From optimal measurement to efficient quantum algorithms for the hidden subgroup problem over semidirect product groups, in Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, 2005, pp. 469-478.
-
(2005)
Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science
, pp. 469-478
-
-
Bacon, D.1
Childs, A.2
Van Dam, W.3
-
8
-
-
0013195416
-
Representations of symmetric groups and free probability
-
P. BIANE, Representations of symmetric groups and free probability, Adv. Math., 138 (1998), pp. 126-181.
-
(1998)
Adv. Math.
, vol.138
, pp. 126-181
-
-
Biane, P.1
-
9
-
-
0037770162
-
Hidden translation and orbit coset in quantum computing
-
K. FRIEDL, G. IVANYOS, F. MAGNIEZ, M. SANTHA, AND P. SEN, Hidden translation and orbit coset in quantum computing, in Proceedings of the 35th Annual ACM Symposium on Theory of Computing, 2003, pp. 1-9.
-
(2003)
Proceedings of the 35th Annual ACM Symposium on Theory of Computing
, pp. 1-9
-
-
Friedl, K.1
Ivanyos, G.2
Magniez, F.3
Santha, M.4
Sen, P.5
-
10
-
-
0003251542
-
Young tableaux: With applications to representation theory and geometry
-
D. Benson, M. W. Etheridge, M. W. Liebeck, J. R. Partington, R. M. Roberts, U. L. Tillmann, and J. F. Toland, eds., Cambridge University Press, Cambridge, UK
-
W. FULTON, Young Tableaux: With Applications to Representation Theory and Geometry, London Math. Soc. Stud. Texts 35, D. Benson, M. W. Etheridge, M. W. Liebeck, J. R. Partington, R. M. Roberts, U. L. Tillmann, and J. F. Toland, eds., Cambridge University Press, Cambridge, UK, 1997.
-
(1997)
London Math. Soc. Stud. Texts
, vol.35
-
-
Fulton, W.1
-
11
-
-
0034819348
-
Quantum mechanical algorithms for the nonabelian hidden subgroup problem
-
M. GRIGNI, L. SCHULMAN, M. VAZIRANI, AND U. VAZIRANI, Quantum mechanical algorithms for the nonabelian hidden subgroup problem, in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, 2001, pp. 68-74.
-
(2001)
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing
, pp. 68-74
-
-
Grigni, M.1
Schulman, L.2
Vazirani, M.3
Vazirani, U.4
-
12
-
-
33947288591
-
Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem
-
S. HALLGREN, Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem, J. ACM, 54 (2007).
-
(2007)
J. ACM
, vol.54
-
-
Hallgren, S.1
-
14
-
-
33748123212
-
Limitations of quantum coset states for graph isomorphism
-
S. HALLGREN, C. MOORE, M. RÖLTTELER, A. RUSSELL, AND P. SEN, Limitations of quantum coset states for graph isomorphism, in Proceedings of the Annual ACM 38th Symposium on Theory of Computing, 2006, pp. 604-617.
-
(2006)
Proceedings of the Annual ACM 38th Symposium on Theory of Computing
, pp. 604-617
-
-
Hallgren, S.1
Moore, C.2
Röltteler, M.3
Russell, A.4
Sen, P.5
-
15
-
-
0141534114
-
The hidden subgroup problem and quantum computation using group representations
-
S. HALLGREN, A. RUSSELL, AND A. TA-SHMA, The hidden subgroup problem and quantum computation using group representations, SIAM J. Comput., 32 (2003), pp. 916-934.
-
(2003)
SIAM J. Comput.
, vol.32
, pp. 916-934
-
-
Hallgren, S.1
Russell, A.2
Ta-Shma, A.3
-
16
-
-
0003233853
-
The representation theory of the symmetric group
-
Addison-Wesley, Reading, MA
-
G. JAMES AND A. KERBER, The Representation Theory of the Symmetric Group, Encyclopedia Math. Appl. 16, Addison-Wesley, Reading, MA, 1981.
-
(1981)
Encyclopedia Math. Appl.
, vol.16
-
-
James, G.1
Kerber, A.2
-
17
-
-
27344455992
-
Asymptotic representation theory ofthe symmetric group and its applications in analysis
-
American Mathematical Society
-
S. V. KEROV, Asymptotic Representation Theory ofthe Symmetric Group and its Applications in Analysis, Transl. Math. Monogr. 219, American Mathematical Society, 2003.
-
(2003)
Transl. Math. Monogr.
, vol.219
-
-
Kerov, S.V.1
-
18
-
-
33644591453
-
A subexponential-time quantum algorithm for the dihedral hidden subgroup
-
G. KUPERBERG, A subexponential-time quantum algorithm for the dihedral hidden subgroup, SIAM J. Computing, 35 (2005), pp. 170-188.
-
(2005)
SIAM J. Computing
, vol.35
, pp. 170-188
-
-
Kuperberg, G.1
-
21
-
-
46449095796
-
The power of strong Fourier sampling: Quantum algorithms for affine groups and hidden shifts
-
C. MOORE, D. N. ROCKMORE, A. RUSSELL, AND L. J. SCHULMAN, The power of strong Fourier sampling: Quantum algorithms for affine groups and hidden shifts,SIAM J. Comput., 37 (2007), pp. 938-958.
-
(2007)
SIAM J. Comput.
, vol.37
, pp. 938-958
-
-
Moore, C.1
Rockmore, D.N.2
Russell, A.3
Schulman, L.J.4
-
22
-
-
55249094588
-
The symmetric group defies strong Fourier sampling
-
C. MOORE, A. RUSSELL, AND L. J. SCHULMAN, The symmetric group defies strong Fourier sampling, SIAM J. Comput., 37 (2008), pp. 1842-1864.
-
(2008)
SIAM J. Comput.
, vol.37
, pp. 1842-1864
-
-
Moore, C.1
Russell, A.2
Schulman, L.J.3
-
23
-
-
41849143305
-
Upper bound on the characters of the symmetric groups for balanced Young diagrams and a generalized Frobenius formula
-
A. RATTAN AND P. SNIADY, Upper bound on the characters of the symmetric groups for balanced Young diagrams and a generalized Frobenius formula, Adv. Math., 218 (2008), pp. 673-695.
-
(2008)
Adv. Math.
, vol.218
, pp. 673-695
-
-
Rattan, A.1
Sniady, P.2
-
25
-
-
0001621239
-
Linear representations of finite groups
-
Springer-Verlag, Berlin
-
J.-P. SERRE, Linear representations of finite groups, Grad. Texts Math. 42, Springer-Verlag, Berlin, 1977.
-
(1977)
Grad. Texts Math.
, vol.42
-
-
Serre, J.-P.1
-
26
-
-
0142051871
-
Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer
-
P. W. SHOR, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer, SIAM J. Comput., 26 (1997), pp. 1484-1509.
-
(1997)
SIAM J. Comput.
, vol.26
, pp. 1484-1509
-
-
Shor, P.W.1
-
27
-
-
0009438294
-
On the power of quantum computation
-
D. R. SIMON, On the power of quantum computation, SIAM, J. Comput., 26 (1997), pp. 1474-1483.
-
(1997)
SIAM, J. Comput.
, vol.26
, pp. 1474-1483
-
-
Simon, D.R.1
-
29
-
-
0040670945
-
Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group
-
in Russian
-
A. M. VERSHIK AND S. V. KEROV, Asymptotic behavior of the maximum and generic dimensions of irreducible representations of the symmetric group, Funk. Anal. i Prolizhen, 19 (1985), pp. 25-36 (in Russian);
-
(1985)
Funk. Anal. i Prolizhen
, vol.19
, pp. 25-36
-
-
Vershik, A.M.1
Kerov, S.V.2
-
30
-
-
33748602296
-
-
in English
-
Funct. Anal. Appl. 19 (1989), pp. 21-31 (in English).
-
(1989)
Funct. Anal. Appl.
, vol.19
, pp. 21-31
-
-
|