메뉴 건너뛰기




Volumn 145, Issue 3, 2010, Pages 543-578

Maximum principle for partially-observed optimal control of fully-coupled forward-backward stochastic systems

Author keywords

Adjoint equations; Fully coupled forward backward stochastic systems; Linear quadratic control; Maximum principle; Partially observed optimal control

Indexed keywords

LINEAR CONTROL SYSTEMS; MAXIMUM PRINCIPLE; OPTIMAL CONTROL SYSTEMS; QUADRATIC PROGRAMMING; STOCHASTIC CONTROL SYSTEMS;

EID: 77952008765     PISSN: 00223239     EISSN: 15732878     Source Type: Journal    
DOI: 10.1007/s10957-010-9696-z     Document Type: Article
Times cited : (45)

References (25)
  • 1
    • 0032634560 scopus 로고    scopus 로고
    • Fully coupled forward-backward stochastic differential equations and applications to the optimal control
    • Peng, S. G., Wu, Z.: Fully coupled forward-backward stochastic differential equations and applications to the optimal control. SIAM J. Control Optim. 37(3), 825-843 (1999).
    • (1999) SIAM J. Control Optim. , vol.37 , Issue.3 , pp. 825-843
    • Peng, S.G.1    Wu, Z.2
  • 3
    • 0023306272 scopus 로고
    • The maximum principle for optimal control of diffusions with partial information
    • Haussmann, U. G.: The maximum principle for optimal control of diffusions with partial information. SIAM J. Control Optim. 25(2), 341-361 (1987).
    • (1987) SIAM J. Control Optim. , vol.25 , Issue.2 , pp. 341-361
    • Haussmann, U.G.1
  • 4
    • 0024767145 scopus 로고
    • The partially-observed stochastic minimum principle
    • Baras, J. S., Elliott, R. J., Kohlmann, M.: The partially-observed stochastic minimum principle. SIAM J. Control Optim. 27(6), 1279-1292 (1989).
    • (1989) SIAM J. Control Optim. , vol.27 , Issue.6 , pp. 1279-1292
    • Baras, J.S.1    Elliott, R.J.2    Kohlmann, M.3
  • 5
    • 21844506371 scopus 로고
    • General necessary conditions for partially-observed optimal stochastic controls
    • Li, X. J., Tang, S. J.: General necessary conditions for partially-observed optimal stochastic controls. J. Appl. Probab. 32, 1118-1137 (1995).
    • (1995) J. Appl. Probab. , vol.32 , pp. 1118-1137
    • Li, X.J.1    Tang, S.J.2
  • 6
    • 0032167311 scopus 로고    scopus 로고
    • The maximum principle for partially-observed optimal control of stochastic differential equations
    • Tang, S. J.: The maximum principle for partially-observed optimal control of stochastic differential equations. SIAM J. Control Optim. 36(5), 1596-1617 (1998).
    • (1998) SIAM J. Control Optim. , vol.36 , Issue.5 , pp. 1596-1617
    • Tang, S.J.1
  • 8
    • 67649583793 scopus 로고    scopus 로고
    • The maximum principle for stochastic recursive optimal control problems under partial information
    • Wang, G. C., Wu, Z.: The maximum principle for stochastic recursive optimal control problems under partial information. IEEE Trans. Autom. Control 54, 1230-1242 (2009).
    • (2009) IEEE Trans. Autom. Control , vol.54 , pp. 1230-1242
    • Wang, G.C.1    Wu, Z.2
  • 9
    • 0030510296 scopus 로고    scopus 로고
    • Hedging options for a large investor and forward-backward SDE's
    • Cvitanic, J., Ma, J.: Hedging options for a large investor and forward-backward SDE's. Ann. Appl. Probab. 6(2), 370-398 (1996).
    • (1996) Ann. Appl. Probab. , vol.6 , Issue.2 , pp. 370-398
    • Cvitanic, J.1    Ma, J.2
  • 11
    • 0000580597 scopus 로고
    • Backward-Forward stochastic differential equations
    • Antonelli, F.: Backward-Forward stochastic differential equations. Ann. Appl. Probab. 3(3), 777-793 (1993).
    • (1993) Ann. Appl. Probab. , vol.3 , Issue.3 , pp. 777-793
    • Antonelli, F.1
  • 12
    • 0344891803 scopus 로고
    • Solving forward-backward stochastic differential equations explicitly-a four step scheme
    • Ma, J., Protter, P., Yong, J. M.: Solving forward-backward stochastic differential equations explicitly-a four step scheme. Probab. Theory Relat. Fields 98, 339-359 (1994).
    • (1994) Probab. Theory Relat. Fields , vol.98 , pp. 339-359
    • Ma, J.1    Protter, P.2    Yong, J.M.3
  • 13
    • 51249168165 scopus 로고
    • Solution of forward-backward stochastic differential equations
    • Hu, Y., Peng, S. G.: Solution of forward-backward stochastic differential equations. Probab. Theory Relat. Fields 103, 273-283 (1995).
    • (1995) Probab. Theory Relat. Fields , vol.103 , pp. 273-283
    • Hu, Y.1    Peng, S.G.2
  • 14
    • 0041022466 scopus 로고    scopus 로고
    • Finding adapted solutions of forward-backward stochastic differential equations: Method of continuation
    • Yong, J. M.: Finding adapted solutions of forward-backward stochastic differential equations: method of continuation. Probab. Theory Relat. Fields 107, 537-572 (1997).
    • (1997) Probab. Theory Relat. Fields , vol.107 , pp. 537-572
    • Yong, J.M.1
  • 15
    • 0033463544 scopus 로고    scopus 로고
    • Forward-backward stochastic differential equations and quasilinear parabolic PDEs
    • Pardoux, E., Tang, S. J.: Forward-backward stochastic differential equations and quasilinear parabolic PDEs. Probab. Theory Relat. Fields 114, 123-150 (1999).
    • (1999) Probab. Theory Relat. Fields , vol.114 , pp. 123-150
    • Pardoux, E.1    Tang, S.J.2
  • 16
    • 0036233502 scopus 로고    scopus 로고
    • On the Existence and Uniqueness of Solutions to FBSDEs in a Non-Degenerate Case
    • Delarue, F.: On the Existence and Uniqueness of Solutions to FBSDEs in a Non-Degenerate Case. Stoch. Process. Appl. 99, 209-286 (2002).
    • (2002) Stoch. Process. Appl. , vol.99 , pp. 209-286
    • Delarue, F.1
  • 18
    • 0038231628 scopus 로고
    • Stochastic maximum principle for optimal control problem of forward and backward system
    • Xu, W. S.: Stochastic maximum principle for optimal control problem of forward and backward system. J. Aust. Math. Soc., Ser. B 37, 172-185 (1995).
    • (1995) J. Aust. Math. Soc., Ser. B , vol.37 , pp. 172-185
    • Xu, W.S.1
  • 19
    • 71249111746 scopus 로고    scopus 로고
    • The maximum principle for fully coupled forward-backward stochastic control systems
    • Shi, J. T., Wu, Z.: The maximum principle for fully coupled forward-backward stochastic control systems. Acta Autom. Sinica 32, 161-169 (2006).
    • (2006) Acta Autom. Sinica , vol.32 , pp. 161-169
    • Shi, J.T.1    Wu, Z.2
  • 21
    • 34248358218 scopus 로고    scopus 로고
    • A maximum principle for stochastic control with partial information
    • Baghery, F., Øksendal, B.: A maximum principle for stochastic control with partial information. Stoch. Anal. Appl. 25, 705-717 (2007).
    • (2007) Stoch. Anal. Appl. , vol.25 , pp. 705-717
    • Baghery, F.1    Øksendal, B.2
  • 22
    • 77952008758 scopus 로고    scopus 로고
    • A maximum principle via Malliavin calculus
    • University of Oslo
    • Meyer-Brandis, T., Øksendal, B., Zhou, X. Y.: A maximum principle via Malliavin calculus. Pure Math., Vol. 10 (2008). University of Oslo.
    • (2008) Pure Math. , vol.10
    • Meyer-Brandis, T.1    Øksendal, B.2    Zhou, X.Y.3
  • 23
    • 77952011404 scopus 로고    scopus 로고
    • Maximum principles for optimal control of forward-backward stochastic differential equations with jumps
    • University of Oslo
    • Øksendal, B., Sulem, A.: Maximum principles for optimal control of forward-backward stochastic differential equations with jumps. Pure Math., Vol. 22 (2008). University of Oslo.
    • (2008) Pure Math. , vol.22
    • Øksendal, B.1    Sulem, A.2
  • 24
    • 71249093378 scopus 로고    scopus 로고
    • A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information
    • Meng, Q. X.: A maximum principle for optimal control problem of fully coupled forward-backward stochastic systems with partial information. Sci. China Ser. A 52(7), 1579-1588 (2009).
    • (2009) Sci. China Ser. A , vol.52 , Issue.7 , pp. 1579-1588
    • Meng, Q.X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.