메뉴 건너뛰기




Volumn 13, Issue 2, 2010, Pages 219-239

A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling

Author keywords

Climate change impacts; Generalized extreme value distribution; Intrinsic autoregressive model; NARCCAP; Reanalysis driven simulations

Indexed keywords


EID: 77951977046     PISSN: 13861999     EISSN: 1572915X     Source Type: Journal    
DOI: 10.1007/s10687-009-0098-2     Document Type: Article
Times cited : (56)

References (28)
  • 1
    • 0034259495 scopus 로고    scopus 로고
    • Geostatistical modelling of spatial interaction data with application to postal service performance
    • Banerjee, S., Gelfand, A. E., Polasek, W.: Geostatistical modelling of spatial interaction data with application to postal service performance. J. Stat. Plan. Inference 90, 87-105 (2000).
    • (2000) J. Stat. Plan. Inference , vol.90 , pp. 87-105
    • Banerjee, S.1    Gelfand, A.E.2    Polasek, W.3
  • 3
    • 0000937172 scopus 로고    scopus 로고
    • Spatial regression models for extremes
    • Casson, E., Coles, S.: Spatial regression models for extremes. Extremes 1, 449-468 (1999).
    • (1999) Extremes , vol.1 , pp. 449-468
    • Casson, E.1    Coles, S.2
  • 4
    • 77951977517 scopus 로고    scopus 로고
    • Regions of focus: North America, Hawaii, Caribbean, and U. S. Pacific Islands. A Report by U. S. Climate Change Science Program and the Subcommittee on Global Change Research, Department of Commerce, NOAA's National Climatic Data Center, Washington, DC
    • CCSP: CCSP synthesis and assessment product 3-3, 2008: weather and climate extremes in a changing climate. Regions of focus: North America, Hawaii, Caribbean, and U. S. Pacific Islands. A Report by U. S. Climate Change Science Program and the Subcommittee on Global Change Research, Department of Commerce, NOAA's National Climatic Data Center, Washington, DC. http://www. climatescience. gov/Library/sap/sap3-3/final-report/ (2008).
    • (2008) CCSP: CCSP Synthesis and Assessment Product 3-3, 2008: Weather and Climate Extremes in a Changing Climate
  • 5
    • 0001771552 scopus 로고    scopus 로고
    • Likelihood-based inference for extreme value models
    • Coles, S., Dixon, M.: Likelihood-based inference for extreme value models. Extremes 2, 523 (1999).
    • (1999) Extremes , vol.2 , pp. 523
    • Coles, S.1    Dixon, M.2
  • 6
    • 77951979236 scopus 로고    scopus 로고
    • Spatial hierarchical modeling of precipiation extremes from a regional climate model
    • Cooley, D., Sain, S. R.: Spatial hierarchical modeling of precipiation extremes from a regional climate model. JABES. http://www.stat.colostate.edu/~cooleyd/Papers/rcmPaper.pdf (2008).
    • (2008) JABES
    • Cooley, D.1    Sain, S.R.2
  • 7
    • 34548761070 scopus 로고    scopus 로고
    • Bayesian spatial modeling of extreme precipitation return levels
    • Cooley, D., Nychka, D., Naveau, P.: Bayesian spatial modeling of extreme precipitation return levels. J. Am. Stat. Assoc. 102, 824-840 (2007).
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 824-840
    • Cooley, D.1    Nychka, D.2    Naveau, P.3
  • 9
    • 0003949358 scopus 로고
    • Water supply paper 1543-a, U. S. Geological Survey, Reston
    • Dalrymple, T.: Flood frequency analyses. Water supply paper 1543-a, U. S. Geological Survey, Reston (1960).
    • (1960) Flood Frequency Analyses
    • Dalrymple, T.1
  • 10
    • 33646415341 scopus 로고    scopus 로고
    • Future change of precipitation extremes in Europe: Intercomparison of scenarios from regional climate models
    • Frei, C., Scholl, R., Fukutome, S., Schmidli, J., Vidale, P. L.: Future change of precipitation extremes in Europe: intercomparison of scenarios from regional climate models. J. Geophys. Res. 111, D06105 (2006).
    • (2006) J. Geophys. Res. , vol.111 , pp. 6105
    • Frei, C.1    Scholl, R.2    Fukutome, S.3    Schmidli, J.4    Vidale, P.L.5
  • 12
    • 77951976843 scopus 로고    scopus 로고
    • Spam: A sparse matrix R package with emphasis on mcmc methods for Gaussian Markov random fields
    • to appear
    • Furrer, R., Sain, S. R.: Spam: a sparse matrix R package with emphasis on mcmc methods for Gaussian Markov random fields. J. Stat. Softw. http://www. image. ucar. edu/~ssain/Steve_Sain_Webpage/Publications. html (2008, to appear).
    • (2008) J. Stat. Softw.
    • Furrer, R.1    Sain, S.R.2
  • 14
    • 0022113451 scopus 로고
    • Estimation of the generalized extreme-value distribution by the method of probability-weighted-moments
    • Hosking, J., Wallis, J., Wood, E.: Estimation of the generalized extreme-value distribution by the method of probability-weighted-moments. Technometrics 27, 251-261 (1985).
    • (1985) Technometrics , vol.27 , pp. 251-261
    • Hosking, J.1    Wallis, J.2    Wood, E.3
  • 18
    • 34247640720 scopus 로고    scopus 로고
    • Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations
    • Kharin, V. V., Zwiers, F. W., Zhang, X. B., Hegerl, G. C.: Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Climate 20, 1419-1444 (2007).
    • (2007) J. Climate , vol.20 , pp. 1419-1444
    • Kharin, V.V.1    Zwiers, F.W.2    Zhang, X.B.3    Hegerl, G.C.4
  • 19
    • 0034019933 scopus 로고    scopus 로고
    • Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data
    • Martins, E., Stedinger, J.: Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resour. Res. 36, 737-744 (2000).
    • (2000) Water Resour. Res. , vol.36 , pp. 737-744
    • Martins, E.1    Stedinger, J.2
  • 24
    • 67651231033 scopus 로고    scopus 로고
    • Hierarchical modeling for extreme values observed over space and time
    • Sang, H., Gelfand, A. E.: Hierarchical modeling for extreme values observed over space and time. Environ. Ecol. Stat. 16, 407-426 (2009).
    • (2009) Environ. Ecol. Stat. , vol.16 , pp. 407-426
    • Sang, H.1    Gelfand, A.E.2
  • 26
    • 3843100123 scopus 로고    scopus 로고
    • Models for stationary max-stable random fields
    • Schlather, M.: Models for stationary max-stable random fields. Extremes 5(1), 33-44 (2002).
    • (2002) Extremes , vol.5 , Issue.1 , pp. 33-44
    • Schlather, M.1
  • 28
    • 11044230421 scopus 로고    scopus 로고
    • Controlling the proportion of falsely-rejected hypotheses when conducting multiple tests with climatological data
    • Ventura, V., Paciorek, C., Risbey, J.: Controlling the proportion of falsely-rejected hypotheses when conducting multiple tests with climatological data. J. Climate 17, 4343-4356 (2004).
    • (2004) J. Climate , vol.17 , pp. 4343-4356
    • Ventura, V.1    Paciorek, C.2    Risbey, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.