메뉴 건너뛰기




Volumn 30, Issue 3, 2010, Pages 58-70

Ssecrett and neuroTrace: Interactive visualization and analysis tools for large-scale neuroscience data sets

Author keywords

Computer graphics; Connectome; Graphics and multimedia; Graphics hardware; Implicit surface rendering; Neuroscience; Segmentation; Volume rendering

Indexed keywords

COMPUTER GRAPHICS; COMPUTER HARDWARE; ELECTRON MICROSCOPES; ELECTRON MICROSCOPY; FLEXIBLE ELECTRONICS; IMAGE SEGMENTATION; MAMMALS; NEUROLOGY; VISUALIZATION; VOLUME RENDERING;

EID: 77951870906     PISSN: 02721716     EISSN: None     Source Type: None    
DOI: 10.1109/MCG.2010.56     Document Type: Article
Times cited : (62)

References (5)
  • 1
    • 31144436747 scopus 로고    scopus 로고
    • The human connectome: A structural description of the human brain
    • doi:10.1371/journal.pcbi.0010042
    • O. Sporns, G. Tononi, and R. Kötter, "The Human Connectome: A Structural Description of the Human Brain," PLoS Computational Biology, vol.1, no.4, 2005, doi:10.1371/journal.pcbi.0010042.
    • (2005) PLoS Computational Biology , vol.1 , Issue.4
    • Sporns, O.1    Tononi, G.2    Kötter, R.3
  • 2
    • 70350630741 scopus 로고    scopus 로고
    • Scalable and Interactive Segmentation and Visualization of Neural Processes in em Datasets
    • W.-K. Jeong et al., "Scalable and Interactive Segmentation and Visualization of Neural Processes in EM Datasets," IEEE Trans. Visualization and Computer Graphics, vol.15, no.6, 2009, pp. 1505-1514.
    • (2009) IEEE Trans. Visualization and Computer Graphics , vol.15 , Issue.6 , pp. 1505-1514
    • Jeong, W.-K.1
  • 4
    • 0242592238 scopus 로고    scopus 로고
    • Acceleration techniques for GPU-based volume rendering
    • IEEE CS Press
    • J. Krüger and R. Westermann, "Acceleration Techniques for GPU-Based Volume Rendering," Proc. IEEE Visualization 03, IEEE CS Press, 2003, pp. 287-292.
    • (2003) Proc. IEEE Visualization 03 , pp. 287-292
    • Krüger, J.1    Westermann, R.2
  • 5
    • 3042525106 scopus 로고    scopus 로고
    • Learning to detect natural image boundaries using local brightness, color, and texture cues
    • D. Martin, C. Fowlkes, and J. Malik, "Learning to Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues," IEEE Trans. Pattern Analysis and Machine Intelligence, vol.26, no.1, 2004, pp. 530-549.
    • (2004) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.26 , Issue.1 , pp. 530-549
    • Martin, D.1    Fowlkes, C.2    Malik, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.