메뉴 건너뛰기




Volumn 2, Issue , 2009, Pages 559-576

Unsupervised Data Mining: Introduction

Author keywords

Cluster analysis; Cluster validity; Data mining; Proximities

Indexed keywords


EID: 77951712492     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-044452701-1.00063-6     Document Type: Chapter
Times cited : (4)

References (54)
  • 4
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A Statistical View of Boosting
    • Friedman J., Hastie T., Tibshirani R. Additive Logistic Regression: A Statistical View of Boosting. Ann. Statist. 2000, 28:337-407.
    • (2000) Ann. Statist. , vol.28 , pp. 337-407
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 5
    • 27944507949 scopus 로고    scopus 로고
    • ChemDB: A Public Database of Small Molecules and Related Chemoinformatics Resources
    • Chen J., Swamidass S.J., Dou Y., Bruand J., Baldi P. ChemDB: A Public Database of Small Molecules and Related Chemoinformatics Resources. Bioinformatics 2005, 21:4133-4139.
    • (2005) Bioinformatics , vol.21 , pp. 4133-4139
    • Chen, J.1    Swamidass, S.J.2    Dou, Y.3    Bruand, J.4    Baldi, P.5
  • 7
    • 0000448043 scopus 로고
    • The Application of Linear Discriminant Analysis in the Diagnosis of Thyroid Diseases
    • Coomans D., Jonckheer M., Massart D.L., Broeckaert I., Block P. The Application of Linear Discriminant Analysis in the Diagnosis of Thyroid Diseases. Anal. Chim. Acta 1978, 103(4):409-415.
    • (1978) Anal. Chim. Acta , vol.103 , Issue.4 , pp. 409-415
    • Coomans, D.1    Jonckheer, M.2    Massart, D.L.3    Broeckaert, I.4    Block, P.5
  • 10
    • 84882467724 scopus 로고    scopus 로고
    • Clustering and Similarity of Chemical Structures Represented by Binary Substructure Descriptors
    • Scsibrany H., Karlovits M., Demuth W., Muller F., Varmuza K. Clustering and Similarity of Chemical Structures Represented by Binary Substructure Descriptors. Chemom. Intell. Lab. Syst. 2003, 1385:1-14.
    • (2003) Chemom. Intell. Lab. Syst. , vol.1385 , pp. 1-14
    • Scsibrany, H.1    Karlovits, M.2    Demuth, W.3    Muller, F.4    Varmuza, K.5
  • 12
    • 0001330098 scopus 로고
    • A General Coefficient of Similarity and Some of Its Properties
    • Gower P. A General Coefficient of Similarity and Some of Its Properties. Biometrics 1971, 27:875-1871.
    • (1971) Biometrics , vol.27 , pp. 875-1871
    • Gower, P.1
  • 13
    • 34250238585 scopus 로고
    • Quantitative Analysis of Quantitative Data
    • Young F.W. Quantitative Analysis of Quantitative Data. Psychometrica 1981, 46:357-388.
    • (1981) Psychometrica , vol.46 , pp. 357-388
    • Young, F.W.1
  • 15
    • 0001543785 scopus 로고
    • Objects into K Groups under Optimal Scaling of Variables
    • Buuren S.V., Heiser W.J., Clustering N. Objects into K Groups under Optimal Scaling of Variables. Psychometrica 1989, 54:699-706.
    • (1989) Psychometrica , vol.54 , pp. 699-706
    • Buuren, S.V.1    Heiser, W.J.2    Clustering, N.3
  • 16
    • 0036012349 scopus 로고    scopus 로고
    • Plaid Models for Gene Expression Data
    • Lazzeroni L., Owen A. Plaid Models for Gene Expression Data. Stat. Sin. 2002, 12(1):61-86.
    • (2002) Stat. Sin. , vol.12 , Issue.1 , pp. 61-86
    • Lazzeroni, L.1    Owen, A.2
  • 17
    • 0035998835 scopus 로고    scopus 로고
    • Model Based Clustering, Discriminant Analysis and Density Estimation
    • Fraley C., Raferty A. Model Based Clustering, Discriminant Analysis and Density Estimation. J. Am. Stat. Assoc. 2002, 97:611-631.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 611-631
    • Fraley, C.1    Raferty, A.2
  • 18
    • 14844295441 scopus 로고    scopus 로고
    • The Use of CART and Multivariate Regression Trees for Supervised and Unsupervised Feature Selection
    • Questier F., Put R., Coomans D., Walczak B., Vander Heyden Y. The Use of CART and Multivariate Regression Trees for Supervised and Unsupervised Feature Selection. Chemom. Intell. Lab. Syst. 2005, 76(1):45-54.
    • (2005) Chemom. Intell. Lab. Syst. , vol.76 , Issue.1 , pp. 45-54
    • Questier, F.1    Put, R.2    Coomans, D.3    Walczak, B.4    Vander Heyden, Y.5
  • 19
    • 0001217510 scopus 로고
    • Clustering by Means of Medoids
    • Elsevier, Amsterdam, Y. Dodge (Ed.)
    • 1 Norm 1987, 405-416. Elsevier, Amsterdam. Y. Dodge (Ed.).
    • (1987) 1 Norm , pp. 405-416
    • Kaufman, L.1    Rousseeuw, P.2
  • 20
    • 34250115918 scopus 로고
    • An Examination of Procedures for Determining the Numbers of Clusters in a Dataset
    • Milligan G.W., Cooper M.C. An Examination of Procedures for Determining the Numbers of Clusters in a Dataset. Psychometrica 1985, 50:159-179.
    • (1985) Psychometrica , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 21
    • 30144445375 scopus 로고    scopus 로고
    • Auto-Associative Multivariate Regression Trees for Cluster Analysis
    • Smyth C., Coomans D., Everingham Y., Hancock T. Auto-Associative Multivariate Regression Trees for Cluster Analysis. Chemom. Intell. Lab. Syst. 2006, 80(1):120-129.
    • (2006) Chemom. Intell. Lab. Syst. , vol.80 , Issue.1 , pp. 120-129
    • Smyth, C.1    Coomans, D.2    Everingham, Y.3    Hancock, T.4
  • 22
    • 0036203115 scopus 로고    scopus 로고
    • A Mixture Model-Based Approach to the Clustering of Microarray Expression Data
    • McLachlan G.J., Bean R.W., Peel D. A Mixture Model-Based Approach to the Clustering of Microarray Expression Data. Bioinformatics 2002, 18(3):413-422.
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 24
    • 0035024021 scopus 로고    scopus 로고
    • Validating Clustering for Gene Expression Data
    • Yeung K.Y., Haynor D.R., Ruzzo W.L. Validating Clustering for Gene Expression Data. Bioinformatics 2001, 17(4):309-318.
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 26
    • 0037172724 scopus 로고    scopus 로고
    • A Prediction-Based Resampling Method for Estimating the Number of Clusters in a Dataset
    • Dudoit S., Fridlyand J. A Prediction-Based Resampling Method for Estimating the Number of Clusters in a Dataset. Genome Biol. 2002, 3(7):0036.1-0036.21.
    • (2002) Genome Biol. , vol.3 , Issue.7
    • Dudoit, S.1    Fridlyand, J.2
  • 27
    • 0001994373 scopus 로고
    • Cluster Analysis and Related Issues
    • World Scientific, Singapore, C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.)
    • Dubes R.C. Cluster Analysis and Related Issues. Handbook of Pattern Recognition and Computer Vision 1993, 3-32. World Scientific, Singapore. C.H. Chen, L.F. Pau, P.S.P. Wang (Eds.).
    • (1993) Handbook of Pattern Recognition and Computer Vision , pp. 3-32
    • Dubes, R.C.1
  • 34
    • 0035676057 scopus 로고    scopus 로고
    • On Clustering Validation Techniques
    • Special Issue on Scientific and Statistical Database Management
    • Halkidi M., Batistakis Y., Vazirgiannis M. On Clustering Validation Techniques. Intell. Inform. Syst. J. 2001, 17:107-145. Special Issue on Scientific and Statistical Database Management.
    • (2001) Intell. Inform. Syst. J. , vol.17 , pp. 107-145
    • Halkidi, M.1    Batistakis, Y.2    Vazirgiannis, M.3
  • 36
    • 0023523514 scopus 로고
    • How Many Clusters Are Best? - An Experiment
    • Dubes R.C. How Many Clusters Are Best? - An Experiment. Pattern Recogniti. 1987, 20(6):645-663.
    • (1987) Pattern Recogniti. , vol.20 , Issue.6 , pp. 645-663
    • Dubes, R.C.1
  • 37
    • 0031166291 scopus 로고    scopus 로고
    • Cluster Validation Using Graph Theoretic Concepts
    • Pal N.R., Biswas J. Cluster Validation Using Graph Theoretic Concepts. Pattern Recognit. 1997, 30(6):847-857.
    • (1997) Pattern Recognit. , vol.30 , Issue.6 , pp. 847-857
    • Pal, N.R.1    Biswas, J.2
  • 40
    • 0035514007 scopus 로고    scopus 로고
    • Resampling Method for Unsupervised Estimation of Cluster Validity
    • Levine E., Domany E. Resampling Method for Unsupervised Estimation of Cluster Validity. Neural Comput. 2001, 13:2573-2593.
    • (2001) Neural Comput. , vol.13 , pp. 2573-2593
    • Levine, E.1    Domany, E.2
  • 42
    • 0015644825 scopus 로고
    • A Fuzzy Relative Isodata Process and Its Use in Detecting Compact Well Separated Clusters
    • Dunn J.C. A Fuzzy Relative Isodata Process and Its Use in Detecting Compact Well Separated Clusters. J. Cybern. 1974, 3:32-57.
    • (1974) J. Cybern. , vol.3 , pp. 32-57
    • Dunn, J.C.1
  • 46
    • 84945923591 scopus 로고
    • A Method for Computing Two Hierarchical Clusterings
    • Fowlkes E.B., Mallows C.L. A Method for Computing Two Hierarchical Clusterings. J. Am. Stat. Assoc. 1983, 78(383):553-584.
    • (1983) J. Am. Stat. Assoc. , vol.78 , Issue.383 , pp. 553-584
    • Fowlkes, E.B.1    Mallows, C.L.2
  • 47
    • 84950632109 scopus 로고
    • Objective Criteria for the Evaluation of Clustering Methods
    • Rand W.M. Objective Criteria for the Evaluation of Clustering Methods. J. Am. Stat. Assoc. 1971, 66(336):846-850.
    • (1971) J. Am. Stat. Assoc. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 48
    • 0015644823 scopus 로고
    • Cluster Validity with Fuzzy Sets
    • Bezdek J.C. Cluster Validity with Fuzzy Sets. J. Cybern. 1974, 3(3):58-72.
    • (1974) J. Cybern. , vol.3 , Issue.3 , pp. 58-72
    • Bezdek, J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.