메뉴 건너뛰기




Volumn 40, Issue 4, 2010, Pages 648-658

A resampling variance estimator for the k nearest neighbours technique

Author keywords

[No Author keywords available]

Indexed keywords

AREA ESTIMATION; AREA OF INTEREST; ARTIFICIAL POPULATION; CLUSTER SAMPLING; COMPUTING TIME; CURRENT ESTIMATOR; FOREST INVENTORY DATA; K NEAREST NEIGHBOURS (K-NN); K-NEAREST NEIGHBOURS; MONTE CARLO SAMPLING; MONTE CARLO SIMULATION; RESAMPLING; SAMPLE SIZES; VARIANCE ESTIMATORS;

EID: 77951678487     PISSN: 00455067     EISSN: None     Source Type: Journal    
DOI: 10.1139/X10-020     Document Type: Article
Times cited : (14)

References (35)
  • 1
    • 58249132746 scopus 로고    scopus 로고
    • Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys
    • doi:10.1016/j.rse.2008.06.014
    • Baffetta, F., Fattorini, L., Franceschi, S., and Corona, P. 2009. Design-based approach to k-nearest neighbours technique for coupling field and remotely sensed data in forest surveys. Remote Sens. Environ. 113(3): 463-475. doi:10.1016/j.rse.2008.06.014.
    • (2009) Remote Sens. Environ , vol.113 , Issue.3 , pp. 463-475
    • Baffetta, F.1    Fattorini, L.2    Franceschi, S.3    Corona, P.4
  • 4
    • 1842665177 scopus 로고    scopus 로고
    • Jackknife variance estimation for nearest-neighbor imputation
    • doi:10.1198/016214501750332839
    • Chen, J.H., and Shao, J. 2001. Jackknife variance estimation for nearest-neighbor imputation. J. Am. Stat. Assoc. 96(453): 260-269. doi:10.1198/016214501750332839.
    • (2001) J. Am. Stat. Assoc , vol.96 , Issue.453 , pp. 260-269
    • Chen, J.H.1    Shao, J.2
  • 6
    • 2142669422 scopus 로고    scopus 로고
    • Subsampling methods to estimate the variance of sample means based on non-stationary spatial data with varying expected values
    • doi:10.1198/016214504000000106
    • Ekström, M., and Sjöstedt-De Luna, S. 2004. Subsampling methods to estimate the variance of sample means based on non-stationary spatial data with varying expected values. J. Am. Stat. Assoc. 99(465): 82-95. doi:10.1198/016214504000000106.
    • (2004) J. Am. Stat. Assoc , vol.99 , Issue.465 , pp. 82-95
    • Ekström, M.1    Sjöstedt-De luna, S.2
  • 8
    • 33646201992 scopus 로고    scopus 로고
    • Applying an efficient k-nearest neighbor search to forest attribute imputation
    • Finley, A.O., McRoberts, R.E., and Ek, A.R. 2006. Applying an efficient k-nearest neighbor search to forest attribute imputation. For. Sci. 52(2): 130-135.
    • (2006) For. Sci , vol.52 , Issue.2 , pp. 130-135
    • Finley, A.O.1    McRoberts, R.E.2    Ek, A.R.3
  • 9
    • 42249097583 scopus 로고    scopus 로고
    • A Bayesian approach to multi-source forest area estimation
    • doi:10.1007/s10651-007-0049-5
    • Finley, A.O., Banerjee, S., and McRoberts, R.E. 2008. A Bayesian approach to multi-source forest area estimation. Environ. Ecol. Stat. 15(2): 241-258. doi:10.1007/s10651-007-0049-5.
    • (2008) Environ. Ecol. Stat , vol.15 , Issue.2 , pp. 241-258
    • Finley, A.O.1    Banerjee, S.2    McRoberts, R.E.3
  • 10
    • 0030613210 scopus 로고    scopus 로고
    • Forest attributes and spatial autocorrelation and interpolation: Effects of alternative sampling schemata in the boreal forest
    • doi:10.1016/S0169-2046(97)80007-2
    • Gilbert, B., and Lowell, K. 1997. Forest attributes and spatial autocorrelation and interpolation: effects of alternative sampling schemata in the boreal forest. Landsc. Urban Plan. 37(3-4): 235-244. doi:10.1016/S0169-2046(97)80007-2.
    • (1997) Landsc. Urban Plan , vol.37 , Issue.3-4 , pp. 235-244
    • Gilbert, B.1    Lowell, K.2
  • 11
    • 0032194277 scopus 로고    scopus 로고
    • Design-based and model-based inference in survey sampling: Appreciating the difference
    • doi:10.1139/cjfr-28-10-1429
    • Gregoire, T.G. 1998. Design-based and model-based inference in survey sampling: appreciating the difference. Can. J. For. Res. 28(10): 1429-1447. doi:10.1139/cjfr-28-10-1429.
    • (1998) Can. J. For. Res , vol.28 , Issue.10 , pp. 1429-1447
    • Gregoire, T.G.1
  • 12
    • 0030680972 scopus 로고    scopus 로고
    • The k-nearest-neighbour method for estimating basal area diameter distribution
    • doi:10.1080/02827589709355401
    • Haara, A., Maltamo, M., and Tokola, T. 1997. The k-nearest-neighbour method for estimating basal area diameter distribution. Scand. J. For. Res. 12(2): 200-208. doi:10.1080/02827589709355401.
    • (1997) Scand. J. For. Res , vol.12 , Issue.2 , pp. 200-208
    • Haara, A.1    Maltamo, M.2    Tokola, T.3
  • 13
    • 21144469983 scopus 로고
    • Optimal smoothing in single-index models
    • doi:10.1214/aos/1176349020
    • Härdle, W., Hall, P., and Ichimura, H. 1993. Optimal smoothing in single-index models. Ann. Stat. 21(1): 157-178. doi:10.1214/aos/1176349020.
    • (1993) Ann. Stat , vol.21 , Issue.1 , pp. 157-178
    • Härdle, W.1    Hall, P.2    Ichimura, H.3
  • 14
    • 33845865536 scopus 로고    scopus 로고
    • Empirical errors of small area estimates from the multisource national forest inventory in eastern Finland
    • Katila, M. 2006. Empirical errors of small area estimates from the multisource national forest inventory in eastern Finland. Silva Fenn. 40(4): 729-742.
    • (2006) Silva Fenn , vol.40 , Issue.4 , pp. 729-742
    • Katila, M.1
  • 15
    • 84950357185 scopus 로고
    • Balanced repeated replications for standard errors
    • doi:10.2307/2284276
    • Kish, L., and Frankel, M.R. 1970. Balanced repeated replications for standard errors. J. Am. Stat. Assoc. 65(331): 1071-1094. doi:10.2307/2284276.
    • (1970) J. Am. Stat. Assoc , vol.65 , Issue.331 , pp. 1071-1094
    • Kish, L.1    Frankel, M.R.2
  • 16
    • 67449131551 scopus 로고    scopus 로고
    • On the assessment of Monte Carlo error in simulation-based statistical analyses
    • doi:10.1198/tast.2009.0030
    • Koehler, E., Brown, E., and Haneuse, J.-P.A. 2009. On the assessment of Monte Carlo error in simulation-based statistical analyses. Am. Stat. 63(2): 155-162. doi:10.1198/tast.2009.0030.
    • (2009) Am. Stat , vol.63 , Issue.2 , pp. 155-162
    • Koehler, E.1    Brown, E.2    Haneuse, J.-P.A.3
  • 18
    • 41249092263 scopus 로고    scopus 로고
    • Estimating stand structural details using nearest neighbor analyses to link ground data, forest cover maps, and Landsat imagery
    • doi:10.1016/j.rse.2007.12.007
    • LeMay, V., Maedel, J., and Coops, N.C. 2008. Estimating stand structural details using nearest neighbor analyses to link ground data, forest cover maps, and Landsat imagery. Remote Sens. Environ. 112(5): 2578-2591. doi:10.1016/j.rse.2007.12.007.
    • (2008) Remote Sens. Environ , vol.112 , Issue.5 , pp. 2578-2591
    • Lemay, V.1    Maedel, J.2    Coops, N.C.3
  • 20
    • 58249141434 scopus 로고    scopus 로고
    • Modelbased mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories
    • doi:10.1016/j.rse.2008.04.018
    • Magnussen, S., McRoberts, R.E., and Tomppo, E. 2009. Modelbased mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories. Remote Sens. Environ. 113(3): 476-488. doi:10.1016/j.rse.2008.04.018.
    • (2009) Remote Sens. Environ , vol.113 , Issue.3 , pp. 476-488
    • Magnussen, S.1    McRoberts, R.E.2    Tomppo, E.3
  • 21
    • 0034925944 scopus 로고    scopus 로고
    • Estimation of timber volume at the sample plot level by means of image segmentation and Landsat TM imagery
    • doi:10.1016/S0034-4257(01)00194-8
    • Mäkelä, H., and Pekkarinen, A. 2001. Estimation of timber volume at the sample plot level by means of image segmentation and Landsat TM imagery. Remote Sens. Environ. 77(1): 66-75. doi:10.1016/S0034-4257(01)00194-8.
    • (2001) Remote Sens. Environ , vol.77 , Issue.1 , pp. 66-75
    • Mäkelä, H.1    Pekkarinen, A.2
  • 22
    • 33746871476 scopus 로고    scopus 로고
    • Evaluation of statistical methods to estimate forest volume in a Mediterranean region
    • doi:10.1109/TGRS.2006.872074
    • Maselli, F., and Chiesi, M. 2006. Evaluation of statistical methods to estimate forest volume in a Mediterranean region. IEEE Trans. Geosci. Remote Sens. 44(8): 2239-2250. doi:10.1109/TGRS.2006.872074.
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.8 , pp. 2239-2250
    • Maselli, F.1    Chiesi, M.2
  • 23
    • 33744998400 scopus 로고    scopus 로고
    • A model-based approach to estimating forest area
    • doi:10.1016/j.rse.2006.03.005
    • McRoberts, R.E. 2006. A model-based approach to estimating forest area. Remote Sens. Environ. 103(1): 56-66. doi:10.1016/j.rse.2006.03.005.
    • (2006) Remote Sens. Environ , vol.103 , Issue.1 , pp. 56-66
    • McRoberts, R.E.1
  • 24
    • 58249142084 scopus 로고    scopus 로고
    • Diagnostic tools for nearest neighbors techniques when used with satellite imagery
    • doi:10.1016/j.rse.2008.06.015
    • McRoberts, R.E. 2009. Diagnostic tools for nearest neighbors techniques when used with satellite imagery. Remote Sens. Environ. 113(3): 489-499. doi:10.1016/j.rse.2008.06.015.
    • (2009) Remote Sens. Environ , vol.113 , Issue.3 , pp. 489-499
    • McRoberts, R.E.1
  • 25
    • 0036789610 scopus 로고    scopus 로고
    • Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique
    • doi:10.1016/S0034-4257(02)00064-0
    • McRoberts, R.E., Nelson, M.D., and Wendt, D.G. 2002. Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sens. Environ. 82(2-3): 457-468. doi:10.1016/S0034-4257(02)00064-0.
    • (2002) Remote Sens. Environ , vol.82 , Issue.2-3 , pp. 457-468
    • McRoberts, R.E.1    Nelson, M.D.2    Wendt, D.G.3
  • 26
    • 35548938953 scopus 로고    scopus 로고
    • Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery
    • doi:10.1016/j.rse.2007.04.002
    • McRoberts, R.E., Tomppo, E.O., Finley, A.O., and Heikkinen, J. 2007. Estimating areal means and variances of forest attributes using the k-Nearest Neighbors technique and satellite imagery. Remote Sens. Environ. 111(4): 466-480. doi:10.1016/j.rse.2007.04.002.
    • (2007) Remote Sens. Environ , vol.111 , Issue.4 , pp. 466-480
    • McRoberts, R.E.1    Tomppo, E.O.2    Finley, A.O.3    Heikkinen, J.4
  • 27
    • 34247531883 scopus 로고    scopus 로고
    • K nearest neighbor method for forest inventory using remote sensing data
    • doi:10.2747/1548-1603.44.2.149
    • Meng, Q.M., Cieszewski, C.J., Madden, M., and Borders, B.E. 2007. K nearest neighbor method for forest inventory using remote sensing data. GISci. Remote Sens. 44(2): 149-165. doi:10.2747/1548-1603.44.2.149.
    • (2007) GISci. Remote Sens , vol.44 , Issue.2 , pp. 149-165
    • Meng, Q.M.1    Cieszewski, C.J.2    Madden, M.3    Borders, B.E.4
  • 28
    • 24344444484 scopus 로고    scopus 로고
    • On optimal spatial subsample size for variance estimation
    • doi:10.1214/009053604000000779
    • Nordman, D.J., and Lahiri, S.N. 2004. On optimal spatial subsample size for variance estimation. Ann. Stat. 32(5): 1981-2027. doi:10.1214/009053604000000779.
    • (2004) Ann. Stat , vol.32 , Issue.5 , pp. 1981-2027
    • Nordman, D.J.1    Lahiri, S.N.2
  • 29
    • 34250738851 scopus 로고    scopus 로고
    • Model-assisted estimation of forest resources with generalized additive models
    • doi:10.1198/016214506000001491
    • Opsomer, J.D., Breidt, F.J., Moisen, G.G., and Kauermann, G. 2007. Model-assisted estimation of forest resources with generalized additive models. J. Am. Stat. Assoc. 102(478): 400-409. doi:10.1198/016214506000001491.
    • (2007) J. Am. Stat. Assoc , vol.102 , Issue.478 , pp. 400-409
    • Opsomer, J.D.1    Breidt, F.J.2    Moisen, G.G.3    Kauermann, G.4
  • 31
    • 3342921985 scopus 로고    scopus 로고
    • Resampling methods in sample surveys
    • doi:10.1080/02331889708802523
    • Shao, J. 1996. Resampling methods in sample surveys. Statistics, 27(3): 203-237. doi:10.1080/02331889708802523.
    • (1996) Statistics , vol.27 , Issue.3 , pp. 203-237
    • Shao, J.1
  • 32
    • 0000943815 scopus 로고    scopus 로고
    • Variance estimation for statistics computed from spatial lattice data
    • Sherman, M. 1996. Variance estimation for statistics computed from spatial lattice data. J. R. Stat. Soc. B, 58(3): 509-523.
    • (1996) J. R. Stat. Soc. B , vol.58 , Issue.3 , pp. 509-523
    • Sherman, M.1
  • 33
    • 3242666106 scopus 로고    scopus 로고
    • Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: A genetic algorithm approach
    • doi:10.1016/j.rse.2004.04.003
    • Tomppo, E., and Halme, M. 2004. Using coarse scale forest variables as ancillary information and weighting of variables in k-NN estimation: a genetic algorithm approach. Remote Sens. Environ. 92(1): 1-20. doi:10.1016/j.rse.2004.04.003.
    • (2004) Remote Sens. Environ , vol.92 , Issue.1 , pp. 1-20
    • Tomppo, E.1    Halme, M.2
  • 34
    • 41349104652 scopus 로고    scopus 로고
    • Combining national forest inventory field plots and remote sensing data for forest databases
    • doi:10.1016/j.rse.2007.03.032
    • Tomppo, E., Olsson, H., Stahl, G., Nilsson, M., Hagner, O., and Katila, M. 2008. Combining national forest inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 112(5): 1982-1999. doi:10.1016/j.rse.2007.03.032.
    • (2008) Remote Sens. Environ , vol.112 , Issue.5 , pp. 1982-1999
    • Tomppo, E.1    Olsson, H.2    Stahl, G.3    Nilsson, M.4    Hagner, O.5    Katila, M.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.