메뉴 건너뛰기




Volumn 48, Issue 2-3, 2010, Pages 83-89

An MLP-based feature subset selection for HIV-1 protease cleavage site analysis

Author keywords

Dimension reduction; Feature selection; HIV 1 protease cleavage site prediction; Multi layered perceptron

Indexed keywords

DIMENSION REDUCTION; FEATURE SELECTION; HIV-1 PROTEASE; MULTI-LAYERED; PERCEPTRON;

EID: 77951634085     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2009.07.010     Document Type: Article
Times cited : (42)

References (26)
  • 1
    • 25144487698 scopus 로고    scopus 로고
    • Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease
    • You L., Garwicz D., Rognvaldsson T. Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease. Journal of Virology 2005, 19:12477-12486.
    • (2005) Journal of Virology , vol.19 , pp. 12477-12486
    • You, L.1    Garwicz, D.2    Rognvaldsson, T.3
  • 2
    • 0032017815 scopus 로고    scopus 로고
    • Artificial neural network model for predicting HIV protease cleavage sites in protein
    • Cai Y., Chou K. Artificial neural network model for predicting HIV protease cleavage sites in protein. Advances in Engineering Software 1998, 29:119-128.
    • (1998) Advances in Engineering Software , vol.29 , pp. 119-128
    • Cai, Y.1    Chou, K.2
  • 3
    • 0037196307 scopus 로고    scopus 로고
    • Support vector machines for predicting hiv protease cleavage sites in protein
    • Cai Y., Liu X., Xu X., Chou K. Support vector machines for predicting hiv protease cleavage sites in protein. Journal of Computational Chemistry 2002, 23:267-274.
    • (2002) Journal of Computational Chemistry , vol.23 , pp. 267-274
    • Cai, Y.1    Liu, X.2    Xu, X.3    Chou, K.4
  • 4
    • 0029595415 scopus 로고
    • Neural network prediction of the hiv-1 protease cleavage sites
    • Thompson T., Chou K., Zheng C. Neural network prediction of the hiv-1 protease cleavage sites. Theoretical biology 1995, 177:369-379.
    • (1995) Theoretical biology , vol.177 , pp. 369-379
    • Thompson, T.1    Chou, K.2    Zheng, C.3
  • 5
    • 0141506120 scopus 로고    scopus 로고
    • Characterizing proteolytic cleavage site activity using bio-basis function neural networks
    • Thomson R., Hodgman T.C., Yang Z.R., Doyle A.K. Characterizing proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics 2003, 19:1741-1747.
    • (2003) Bioinformatics , vol.19 , pp. 1741-1747
    • Thomson, R.1    Hodgman, T.C.2    Yang, Z.R.3    Doyle, A.K.4
  • 6
    • 0003076895 scopus 로고    scopus 로고
    • Feature selection for high-dimensional genomic microarray data
    • Morgan Kaufmann, San Francisco, USA, C.E. Brodley, A.P. Danyluk (Eds.)
    • Xing E., Jordan M., Karp R. Feature selection for high-dimensional genomic microarray data. Proceedings of the 18th international conference on machine learning 2001, 601-608. Morgan Kaufmann, San Francisco, USA. C.E. Brodley, A.P. Danyluk (Eds.).
    • (2001) Proceedings of the 18th international conference on machine learning , pp. 601-608
    • Xing, E.1    Jordan, M.2    Karp, R.3
  • 7
    • 30344465722 scopus 로고    scopus 로고
    • Feature-selection overfitting with small-sample classifier design
    • Dougherty E.R. Feature-selection overfitting with small-sample classifier design. IEEE Intelligent Systems Magazine 2005, 20(6):64-66.
    • (2005) IEEE Intelligent Systems Magazine , vol.20 , Issue.6 , pp. 64-66
    • Dougherty, E.R.1
  • 8
    • 30344466927 scopus 로고    scopus 로고
    • Feature selection: we've barely scratched the surface
    • Forman G. Feature selection: we've barely scratched the surface. IEEE Intelligent Systems 2005, 20(6):74-76.
    • (2005) IEEE Intelligent Systems , vol.20 , Issue.6 , pp. 74-76
    • Forman, G.1
  • 11
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97:245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 12
    • 0002715112 scopus 로고    scopus 로고
    • A probabilistic approach to feature selection-a filter solution
    • Morgan Kaufmann, San Francisco, USA, L. Saitta (Ed.)
    • Liu H., Setiono R. A probabilistic approach to feature selection-a filter solution. Proceedings of the 13th international conference on machine learning 1996, 319-327. Morgan Kaufmann, San Francisco, USA. L. Saitta (Ed.).
    • (1996) Proceedings of the 13th international conference on machine learning , pp. 319-327
    • Liu, H.1    Setiono, R.2
  • 13
    • 0002790068 scopus 로고    scopus 로고
    • An adaptation of relief for attribute estimation in regression
    • Morgan Kaufmann, San Francisco, USA, D.H. Fisher (Ed.)
    • Marko R.S., Igor K. An adaptation of relief for attribute estimation in regression. Proceedings of the 14th international conference on machine learning 1997, 296-304. Morgan Kaufmann, San Francisco, USA. D.H. Fisher (Ed.).
    • (1997) Proceedings of the 14th international conference on machine learning , pp. 296-304
    • Marko, R.S.1    Igor, K.2
  • 14
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46:389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 16
    • 77951644475 scopus 로고    scopus 로고
    • (accessed: 29 June).
    • (accessed: 29 June 2009). http://www.cs.waikato.ac.nz/ml/weka/.
    • (2009)
  • 18
    • 0036166439 scopus 로고    scopus 로고
    • Tumor classification by partial least squares using microarray gene expression data
    • Nguyen D.V., Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002, 18:39-50.
    • (2002) Bioinformatics , vol.18 , pp. 39-50
    • Nguyen, D.V.1    Rocke, D.M.2
  • 19
    • 0004255908 scopus 로고    scopus 로고
    • McGraw-Hill International Editions, US
    • Mitchell T.M. Machine learning 1997, McGraw-Hill International Editions, US.
    • (1997) Machine learning
    • Mitchell, T.M.1
  • 20
    • 0000029122 scopus 로고
    • A simple weight decay can improve generalization
    • Kaufmann, Cambridge, J.E. Moody, S.J. Hanson, R.P. Lippman (Eds.)
    • Krogh A., Hertz J.A. A simple weight decay can improve generalization. Advances in neural information processing systems 4 1992, 950-957. Kaufmann, Cambridge. J.E. Moody, S.J. Hanson, R.P. Lippman (Eds.).
    • (1992) Advances in neural information processing systems 4 , pp. 950-957
    • Krogh, A.1    Hertz, J.A.2
  • 21
    • 84974666259 scopus 로고    scopus 로고
    • Computationally efficient heuristics for if-then rule extraction from feed-forward neural networks
    • Kim H. Computationally efficient heuristics for if-then rule extraction from feed-forward neural networks. Lecture Notes in Artificial Intelligence 2000, 170-182.
    • (2000) Lecture Notes in Artificial Intelligence , pp. 170-182
    • Kim, H.1
  • 22
    • 77951629907 scopus 로고    scopus 로고
    • (accessed: 29 June).
    • (accessed: 29 June 2009). http://www.cse.unsw.edu.au/~mike/roc.pdf.
    • (2009)
  • 23
    • 77951651297 scopus 로고
    • et al. The monk's problems: a performance comparison of different learning algorithms, Technical Report CMU-CS-91-197, Carnegie Mellon University;
    • Thrun SB, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, et al. The monk's problems: a performance comparison of different learning algorithms, Technical Report CMU-CS-91-197, Carnegie Mellon University; 1991.
    • (1991)
    • Thrun, SB.1    Bala, J.2    Bloedorn, E.3    Bratko, I.4    Cestnik, B.5    Cheng, J.6
  • 24
    • 0019094381 scopus 로고
    • A critical evaluation of intrinsic dimensionality algorithms
    • Morgan Kaufmann, San Francisco, E.S. Geleman, L.N. Kanal (Eds.)
    • Wyse N., Dubes R., Jain A.K. A critical evaluation of intrinsic dimensionality algorithms. Pattern recognition in practice 1980, 415-425. Morgan Kaufmann, San Francisco. E.S. Geleman, L.N. Kanal (Eds.).
    • (1980) Pattern recognition in practice , pp. 415-425
    • Wyse, N.1    Dubes, R.2    Jain, A.K.3
  • 25
    • 77951634582 scopus 로고    scopus 로고
    • Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft Research Technical Report MSR-TR-98-14;
    • Platt J. Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft Research Technical Report MSR-TR-98-14; 1998.
    • (1998)
    • Platt, J.1
  • 26
    • 77951638981 scopus 로고    scopus 로고
    • (accessed: 29 June).
    • (accessed: 29 June 2009). http://weblogo.berkeley.edu/.
    • (2009)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.