-
1
-
-
25144487698
-
Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease
-
You L., Garwicz D., Rognvaldsson T. Comprehensive bioinformatic analysis of the specificity of human immunodeficiency virus type 1 protease. Journal of Virology 2005, 19:12477-12486.
-
(2005)
Journal of Virology
, vol.19
, pp. 12477-12486
-
-
You, L.1
Garwicz, D.2
Rognvaldsson, T.3
-
2
-
-
0032017815
-
Artificial neural network model for predicting HIV protease cleavage sites in protein
-
Cai Y., Chou K. Artificial neural network model for predicting HIV protease cleavage sites in protein. Advances in Engineering Software 1998, 29:119-128.
-
(1998)
Advances in Engineering Software
, vol.29
, pp. 119-128
-
-
Cai, Y.1
Chou, K.2
-
3
-
-
0037196307
-
Support vector machines for predicting hiv protease cleavage sites in protein
-
Cai Y., Liu X., Xu X., Chou K. Support vector machines for predicting hiv protease cleavage sites in protein. Journal of Computational Chemistry 2002, 23:267-274.
-
(2002)
Journal of Computational Chemistry
, vol.23
, pp. 267-274
-
-
Cai, Y.1
Liu, X.2
Xu, X.3
Chou, K.4
-
4
-
-
0029595415
-
Neural network prediction of the hiv-1 protease cleavage sites
-
Thompson T., Chou K., Zheng C. Neural network prediction of the hiv-1 protease cleavage sites. Theoretical biology 1995, 177:369-379.
-
(1995)
Theoretical biology
, vol.177
, pp. 369-379
-
-
Thompson, T.1
Chou, K.2
Zheng, C.3
-
5
-
-
0141506120
-
Characterizing proteolytic cleavage site activity using bio-basis function neural networks
-
Thomson R., Hodgman T.C., Yang Z.R., Doyle A.K. Characterizing proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics 2003, 19:1741-1747.
-
(2003)
Bioinformatics
, vol.19
, pp. 1741-1747
-
-
Thomson, R.1
Hodgman, T.C.2
Yang, Z.R.3
Doyle, A.K.4
-
6
-
-
0003076895
-
Feature selection for high-dimensional genomic microarray data
-
Morgan Kaufmann, San Francisco, USA, C.E. Brodley, A.P. Danyluk (Eds.)
-
Xing E., Jordan M., Karp R. Feature selection for high-dimensional genomic microarray data. Proceedings of the 18th international conference on machine learning 2001, 601-608. Morgan Kaufmann, San Francisco, USA. C.E. Brodley, A.P. Danyluk (Eds.).
-
(2001)
Proceedings of the 18th international conference on machine learning
, pp. 601-608
-
-
Xing, E.1
Jordan, M.2
Karp, R.3
-
7
-
-
30344465722
-
Feature-selection overfitting with small-sample classifier design
-
Dougherty E.R. Feature-selection overfitting with small-sample classifier design. IEEE Intelligent Systems Magazine 2005, 20(6):64-66.
-
(2005)
IEEE Intelligent Systems Magazine
, vol.20
, Issue.6
, pp. 64-66
-
-
Dougherty, E.R.1
-
8
-
-
30344466927
-
Feature selection: we've barely scratched the surface
-
Forman G. Feature selection: we've barely scratched the surface. IEEE Intelligent Systems 2005, 20(6):74-76.
-
(2005)
IEEE Intelligent Systems
, vol.20
, Issue.6
, pp. 74-76
-
-
Forman, G.1
-
9
-
-
37549048173
-
Specificity rule discovery in hiv-1 protease cleavage site analysis
-
Kim H., Zhang Y., Heo Y.S., Oh H.B., Chen S.S. Specificity rule discovery in hiv-1 protease cleavage site analysis. Computational Biology and Chemistry 2008, 32:71-78.
-
(2008)
Computational Biology and Chemistry
, vol.32
, pp. 71-78
-
-
Kim, H.1
Zhang, Y.2
Heo, Y.S.3
Oh, H.B.4
Chen, S.S.5
-
11
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A.L., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97:245-271.
-
(1997)
Artificial Intelligence
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
12
-
-
0002715112
-
A probabilistic approach to feature selection-a filter solution
-
Morgan Kaufmann, San Francisco, USA, L. Saitta (Ed.)
-
Liu H., Setiono R. A probabilistic approach to feature selection-a filter solution. Proceedings of the 13th international conference on machine learning 1996, 319-327. Morgan Kaufmann, San Francisco, USA. L. Saitta (Ed.).
-
(1996)
Proceedings of the 13th international conference on machine learning
, pp. 319-327
-
-
Liu, H.1
Setiono, R.2
-
13
-
-
0002790068
-
An adaptation of relief for attribute estimation in regression
-
Morgan Kaufmann, San Francisco, USA, D.H. Fisher (Ed.)
-
Marko R.S., Igor K. An adaptation of relief for attribute estimation in regression. Proceedings of the 14th international conference on machine learning 1997, 296-304. Morgan Kaufmann, San Francisco, USA. D.H. Fisher (Ed.).
-
(1997)
Proceedings of the 14th international conference on machine learning
, pp. 296-304
-
-
Marko, R.S.1
Igor, K.2
-
14
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46:389-422.
-
(2002)
Machine Learning
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
16
-
-
77951644475
-
-
(accessed: 29 June).
-
(accessed: 29 June 2009). http://www.cs.waikato.ac.nz/ml/weka/.
-
(2009)
-
-
-
18
-
-
0036166439
-
Tumor classification by partial least squares using microarray gene expression data
-
Nguyen D.V., Rocke D.M. Tumor classification by partial least squares using microarray gene expression data. Bioinformatics 2002, 18:39-50.
-
(2002)
Bioinformatics
, vol.18
, pp. 39-50
-
-
Nguyen, D.V.1
Rocke, D.M.2
-
19
-
-
0004255908
-
-
McGraw-Hill International Editions, US
-
Mitchell T.M. Machine learning 1997, McGraw-Hill International Editions, US.
-
(1997)
Machine learning
-
-
Mitchell, T.M.1
-
20
-
-
0000029122
-
A simple weight decay can improve generalization
-
Kaufmann, Cambridge, J.E. Moody, S.J. Hanson, R.P. Lippman (Eds.)
-
Krogh A., Hertz J.A. A simple weight decay can improve generalization. Advances in neural information processing systems 4 1992, 950-957. Kaufmann, Cambridge. J.E. Moody, S.J. Hanson, R.P. Lippman (Eds.).
-
(1992)
Advances in neural information processing systems 4
, pp. 950-957
-
-
Krogh, A.1
Hertz, J.A.2
-
21
-
-
84974666259
-
Computationally efficient heuristics for if-then rule extraction from feed-forward neural networks
-
Kim H. Computationally efficient heuristics for if-then rule extraction from feed-forward neural networks. Lecture Notes in Artificial Intelligence 2000, 170-182.
-
(2000)
Lecture Notes in Artificial Intelligence
, pp. 170-182
-
-
Kim, H.1
-
22
-
-
77951629907
-
-
(accessed: 29 June).
-
(accessed: 29 June 2009). http://www.cse.unsw.edu.au/~mike/roc.pdf.
-
(2009)
-
-
-
23
-
-
77951651297
-
-
et al. The monk's problems: a performance comparison of different learning algorithms, Technical Report CMU-CS-91-197, Carnegie Mellon University;
-
Thrun SB, Bala J, Bloedorn E, Bratko I, Cestnik B, Cheng J, et al. The monk's problems: a performance comparison of different learning algorithms, Technical Report CMU-CS-91-197, Carnegie Mellon University; 1991.
-
(1991)
-
-
Thrun, SB.1
Bala, J.2
Bloedorn, E.3
Bratko, I.4
Cestnik, B.5
Cheng, J.6
-
24
-
-
0019094381
-
A critical evaluation of intrinsic dimensionality algorithms
-
Morgan Kaufmann, San Francisco, E.S. Geleman, L.N. Kanal (Eds.)
-
Wyse N., Dubes R., Jain A.K. A critical evaluation of intrinsic dimensionality algorithms. Pattern recognition in practice 1980, 415-425. Morgan Kaufmann, San Francisco. E.S. Geleman, L.N. Kanal (Eds.).
-
(1980)
Pattern recognition in practice
, pp. 415-425
-
-
Wyse, N.1
Dubes, R.2
Jain, A.K.3
-
25
-
-
77951634582
-
-
Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft Research Technical Report MSR-TR-98-14;
-
Platt J. Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft Research Technical Report MSR-TR-98-14; 1998.
-
(1998)
-
-
Platt, J.1
-
26
-
-
77951638981
-
-
(accessed: 29 June).
-
(accessed: 29 June 2009). http://weblogo.berkeley.edu/.
-
(2009)
-
-
|