메뉴 건너뛰기




Volumn 19, Issue 1, 2010, Pages 203-214

Improved fast fuzzy C-mean and its application in medical image segmentation

Author keywords

Image segmentation; MRI; Supervised methods

Indexed keywords

AUTOMATIC METHOD; CLUSTERING METHODS; COLOR IMAGES; DIAGNOSIS TOOLS; FAST FCM; FUZZY C MEAN; GRAY LEVEL IMAGE; GRAY LEVELS; INHOMOGENEITIES; INPUT DATAS; LOW CONTRAST; MEDICAL IMAGE SEGMENTATION; MEDICAL IMAGES; TARGET CLASS; TRAINING DATA;

EID: 77951550469     PISSN: 02181266     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0218126610006001     Document Type: Article
Times cited : (17)

References (21)
  • 4
    • 0026925678 scopus 로고
    • A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain
    • L. O. Hall, A. M. Bensaid, L. P. Clarke, R. P. Velthuizen, M. S. Silbiger and J. C. Bezdek, A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain, IEEE Trans. Neural Netw. 3 (1992) 672-682.
    • (1992) IEEE Trans. Neural Netw , vol.3 , pp. 672-682
    • Hall, L.O.1    Bensaid, A.M.2    Clarke, L.P.3    Velthuizen, R.P.4    Silbiger, M.S.5    Bezdek, J.C.6
  • 6
    • 0026197323 scopus 로고
    • Automatic segmentation of head mri images by knowledge guided thresholding
    • H. Suzuki and J. Toriwaki, Automatic segmentation of head MRI images by knowledge guided thresholding, Comput. Med. Image Graph. 15 (1991) 233-240.
    • (1991) Comput. Med. Image Graph , vol.15 , pp. 233-240
    • Suzuki, H.1    Toriwaki, J.2
  • 9
    • 25844489923 scopus 로고    scopus 로고
    • MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization
    • DOI 10.1109/TITB.2005.847500
    • S. Shen, W. Sandham, M. Granat and A. Sterr, MRI fuzzy segmentation of brain tissue using neighbourhood attraction with neural-network optimization, IEEE Trans. Inform. Tech. Biomed. 9 (2005) 459-467. (Pubitemid 41388212)
    • (2005) IEEE Transactions on Information Technology in Biomedicine , vol.9 , Issue.3 , pp. 459-467
    • Shen, S.1    Sandham, W.2    Granat, M.3    Sterr, A.4
  • 10
    • 0033871373 scopus 로고    scopus 로고
    • Scale space classification using area morphology
    • S. T. Acton and D. P. Mukherjee, Scale space classification using area morphology, IEEE Trans. Image Process. 9 (2000) 623-635.
    • (2000) IEEE Trans. Image Process , vol.9 , pp. 623-635
    • Acton, S.T.1    Mukherjee, D.P.2
  • 11
    • 4444347719 scopus 로고    scopus 로고
    • A novel kernelized fuzzy c-means algorithm with application in medical image segmentation
    • D. Q. Zhang and S. C. Chen, A novel kernelized fuzzy c-means algorithm with application in medical image segmentation, Artif. Intell. Med. 32 (2004) 37-52.
    • (2004) Artif. Intell. Med. , vol.32 , pp. 37-52
    • Zhang, D.Q.1    Chen, S.C.2
  • 12
    • 0000586827 scopus 로고
    • Characterization and detection of noise in clustering
    • R. N. Dave, Characterization and detection of noise in clustering, Pattern Recogn. Lett. 12 (1991) 657-664.
    • (1991) Pattern Recogn. Lett , pp. 657-664
    • Dave, R.N.1
  • 13
    • 0035502877 scopus 로고    scopus 로고
    • Spatial models for fuzzy clustering
    • D. L. Pham, Spatial models for fuzzy clustering, Comput. Vis. Image. Underst. 84 (2001) 285-297.
    • (2001) Comput. Vis. Image. Underst , pp. 285-297
    • Pham, D.L.1
  • 14
    • 0036489378 scopus 로고    scopus 로고
    • A modified fuzzy C-means algorithm for bias field estimation and segmentation of MRI data
    • DOI 10.1109/42.996338, PII S0278006202040880
    • M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag and T. Moriarty, A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Med. Imag. 21 (2002) 193-199. (Pubitemid 34630837)
    • (2002) IEEE Transactions on Medical Imaging , vol.21 , Issue.3 , pp. 193-199
    • Ahmed, M.N.1    Yamany, S.M.2    Mohamed, N.3    Farag, A.A.4    Moriarty, T.5
  • 16
    • 0032187761 scopus 로고    scopus 로고
    • On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system
    • Y. A. Tolias and S. M. Panas, On applying spatial constraints in fuzzy image clustering using a fuzzy rule-based system, IEEE Signal Process. Lett. 5 (1998) 245-247.
    • (1998) IEEE Signal Process. Lett , vol.5 , pp. 245-247
    • Tolias, Y.A.1    Panas, S.M.2
  • 17
    • 43149092856 scopus 로고    scopus 로고
    • A novel fuzzy c-means clustering algorithm for image thresholding
    • Y. Yong, Z. Chongxun and L. Pan, A novel fuzzy c-means clustering algorithm for image thresholding, Meas. Sci. Rev. 4 (2004).
    • (2004) Meas. Sci. Rev , vol.4
    • Yong, Y.1    Chongxun, Z.2    Pan, L.3
  • 18
    • 77951564710 scopus 로고    scopus 로고
    • BrainWeb Online. Available
    • BrainWeb [Online]. Available: www.bic.mni.mcgill.ca/brainweb/.
  • 20
    • 57049095869 scopus 로고    scopus 로고
    • An new initialization method for fuzzy c-means algorithm
    • K. Zou, Z. Wang and M. Hu, An new initialization method for fuzzy c-means algorithm, Fuzzy Optim. Dicis. Making. 7 (2008) 409-416.
    • (2008) Fuzzy Optim. Dicis. Making , vol.7 , pp. 409-416
    • Zou, K.1    Wang, Z.2    Hu, M.3
  • 21


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.