메뉴 건너뛰기




Volumn 24, Issue 5, 2010, Pages 363-381

Online pattern recognition based on a generalized hidden Markov model for intraoperative vital sign monitoring

Author keywords

Change point detection; Generalized hidden Markov model; NIBPmean; Pattern recognition; Physiological monitoring; Switching Kalman filter

Indexed keywords

BAYESIAN INFERENCE; CHANGE POINT DETECTION; CHANGE-POINTS; CLINICAL DATA; COMPUTATIONAL OVERHEADS; CONTEXTUAL INFORMATION; FIRST-ORDER; GENERALIZED HIDDEN MARKOV MODEL; GENERALIZED HIDDEN MARKOV MODELS; GENERALIZED PSEUDO-BAYESIAN; HIDDEN SEMI-MARKOV MODELS; INTRA-OPERATIVE; KALMAN SMOOTHER; LINKED TABLES; MEMORY COMPLEXITY; NON-INVASIVE; PATTERN TRANSITIONS; PHYSIOLOGICAL MEASUREMENT; PHYSIOLOGICAL MONITORING; PRESSURE TRENDS; PROBABILITY OF OCCURRENCE; QUANTITATIVE EVALUATION; SECOND ORDERS; SIGNAL ESTIMATION; SIGNAL VALUE; SIMULATED SIGNALS; VITAL SIGN;

EID: 77951530517     PISSN: 08906327     EISSN: 10991115     Source Type: Journal    
DOI: 10.1002/acs.1130     Document Type: Article
Times cited : (10)

References (35)
  • 1
    • 0034902182 scopus 로고    scopus 로고
    • Alarms in the intensive care unit: How can the number of false alarms be reduced?
    • DOI 10.1186/cc1021
    • Chambrin MC. Alarms in the intensive care unit: how can the number of false alarms be reduced? Critical Care 2001; 5(4):184-188. DOI 10.1186/cc1021. (Pubitemid 32734333)
    • (2001) Critical Care , vol.5 , Issue.4 , pp. 184-188
    • Chambrin, M.-C.1
  • 4
    • 17644408377 scopus 로고    scopus 로고
    • On line extraction of temporal episodes from ICU high-frequency data: A visual support for signal interpretation
    • DOI 10.1016/j.cmpb. 2005.01.003
    • Charbonnier S. On line extraction of temporal episodes from ICU high-frequency data: a visual support for signal interpretation. Computer Methods and Programs in Biomedicine 2005; 78(2):115-132. DOI 10.1016/j.cmpb. 2005.01.003.
    • (2005) Computer Methods and Programs in Biomedicine , vol.78 , Issue.2 , pp. 115-132
    • Charbonnier, S.1
  • 5
    • 33750313625 scopus 로고    scopus 로고
    • Adaptive change detection in heart rate trend monitoring in anesthetized children
    • Yang P, Dumont G, Ansermino J. Adaptive change detection in heart rate trend monitoring in anesthetized children. IEEE Transactions on Biomedical Engineering 2006; 53(11): 2211-2219.
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , Issue.11 , pp. 2211-2219
    • Yang, P.1    Dumont, G.2    Ansermino, J.3
  • 6
    • 0030245363 scopus 로고    scopus 로고
    • From HMM's to segment models: A unified view of stochastic modeling for speech recognition
    • DOI 10.1109/89.536930
    • Ostendorf M, Digalakis VV, Kimball OA. From HMM's to segment models: a unified view of stochastic modeling for speech recognition. IEEE Transaction of Speech and Audio Processing 1996; 4(5):360-378. DOI 10.1109/89.536930.
    • (1996) IEEE Transaction of Speech and Audio Processing , vol.4 , Issue.5 , pp. 360-378
    • Ostendorf, M.1    Digalakis, V.V.2    Kimball, O.A.3
  • 8
    • 0031586003 scopus 로고    scopus 로고
    • Prediction of complete gene structures in human genomic DNA
    • DOI 10.1006/jmbi.1997.0951
    • Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA. Journal of Molecular Biology 1997; 268(1):78-94. DOI 10.1006/jmbi.1997.0951. (Pubitemid 27192680)
    • (1997) Journal of Molecular Biology , vol.268 , Issue.1 , pp. 78-94
    • Burge, C.1    Karlin, S.2
  • 9
    • 13244265565 scopus 로고    scopus 로고
    • Efficient decoding algorithms for generalized hidden Markov model gene finders
    • DOI 10.1186/ 1471-2105-6-16
    • Majoros WH, Pertea M, Delche AL, Salzberg SL. Efficient decoding algorithms for generalized hidden Markov model gene finders. BMC Bioinformatics 2005; 6:16. DOI 10.1186/ 1471-2105-6-16.
    • (2005) BMC Bioinformatics , vol.6 , Issue.16
    • Majoros, W.H.1    Pertea, M.2    Delche, A.L.3    Salzberg, S.L.4
  • 10
    • 84864058259 scopus 로고    scopus 로고
    • Factorial switching Kalman filters for condition monitoring in neonatal intensive care
    • MIT Press: Cambridge, MA
    • Williams CKI, Quinn J, Mcintosh N. Factorial switching Kalman filters for condition monitoring in neonatal intensive care. Advances in Neural Information Processing Systems 18, MIT Press: Cambridge, MA, 2006; 1513-1520.
    • (2006) Advances in Neural Information Processing Systems , vol.18 , pp. 1513-1520
    • Williams, C.K.I.1    Quinn, J.2    McIntosh, N.3
  • 12
    • 9444225878 scopus 로고    scopus 로고
    • Hidden semi-Markov models (segment models)
    • November
    • Murphy K. Hidden semi-Markov models (segment models). Technical Report, MIT AI Lab November 2002. URL http://www.cs.ubc.ca/murphyk/papers. html#techreports.
    • (2002) Technical Report, MIT AI Lab
    • Murphy, K.1
  • 13
    • 34047119287 scopus 로고    scopus 로고
    • An adaptive cusum test based on a hidden semi-Markov model for change detection in non-invasive mean blood pressure trend
    • DOI 10.1109/IEMBS.2006.260594, 4029853, 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS'06
    • Yang P, Dumont G, Ansermino JM. An adaptive Cusum test based on a hidden semi-Markov model for change detection in non-invasive mean blood pressure trend. Proceedings of EMBS'06. Twenty eighth Annual International Conference of the IEEE, New York, U.S.A., 2006; 3395-3398. DOI 10.1109/IEMBS.2006.260594. (Pubitemid 46520638)
    • (2006) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings , pp. 3395-3398
    • Yang, P.1    Dumont, G.2    Ansermino, J.M.3
  • 18
    • 38149116165 scopus 로고    scopus 로고
    • One-step approximations for detecting regime changes in the state space model with application to the influenza data
    • DOI 10.1016/j.csda.2007.08.019
    • Zhou T, Shumway R. One-step approximations for detecting regime changes in the state space model with application to the influenza data. Computational Statistics and Data Analysis 2008; 52(5):2277-2291. DOI 10.1016/j.csda.2007.08. 019.
    • (2008) Computational Statistics and Data Analysis , vol.52 , Issue.5 , pp. 2277-2291
    • Zhou, T.1    Shumway, R.2
  • 21
    • 27544487616 scopus 로고    scopus 로고
    • A comparative study of multiple-model algorithms for maneuvering target tracking
    • DOI 10.1117/12.609681, 68, Signal Processing, Sensor Fusion, and Target Recognition XIV
    • Pitre RR, Jilkov VP, Li XR. A comparative study of multiple-model algorithms for maneuvering target tracking. In Signal Processing, Sensor Fusion, and Target Recognition XIV, Kadar I (ed.), Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference, vol.5809. 2005; 549-560. DOI 10.1117/12.609681. (Pubitemid 41545255)
    • (2005) Proceedings of SPIE - The International Society for Optical Engineering , vol.5809 , pp. 549-560
    • Pitre, R.R.1    Jilkov, V.P.2    Li, X.R.3
  • 22
    • 34250081181 scopus 로고
    • Generalized pseudo-Bayes estimation and detection for abruptly changing systems
    • DOI 10.1007/BF01258214
    • Watanabe K, Tzafestas SG. Generalized pseudo-Bayes estimation and detection for abruptly changing systems. Journal of Intelligent and Robotic Systems 1993; 7(1):95-112. DOI 10.1007/BF01258214.
    • (1993) Journal of Intelligent and Robotic Systems , vol.7 , Issue.1 , pp. 95-112
    • Watanabe, K.1    Tzafestas, S.G.2
  • 23
    • 0042307623 scopus 로고    scopus 로고
    • Probabilistic sensitivity analysis for decision trees with multiple branches: Use of the Dirichlet distribution in a Bayesian framework
    • DOI 10.1177/0272989X03255922
    • Briggs AH, Ades AE, Price MJ. Probabilistic sensitivity analysis for decision trees with multiple branches: use of the Dirichlet distribution in a Bayesian framework. Medical Decision Making 2003; 23(4):341-350. DOI 10.1177/0272989X03255922. (Pubitemid 36899100)
    • (2003) Medical Decision Making , vol.23 , Issue.4 , pp. 341-350
    • Briggs, A.H.1    Ades, A.E.2    Price, M.J.3
  • 25
    • 34247529472 scopus 로고    scopus 로고
    • Understanding diagnostic tests 3: Receiver operating characteristic curves
    • DOI 10.1111/j.1651-2227.2006. 00178.x
    • Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatrica 2007; 96(5):644-647. DOI 10.1111/j.1651-2227.2006. 00178.x.
    • (2007) Acta Paediatrica , vol.96 , Issue.5 , pp. 644-647
    • Akobeng, A.K.1
  • 26
    • 34547177224 scopus 로고    scopus 로고
    • On the independence of compliance and reliance: Are automation false alarms worse than misses?
    • DOI 10.1518/001872007X215656
    • Dixon SR, Wickens CD, McCarley JS. On the independence of compliance and reliance: are automation false alarms worse than misses? Human Factors 2007; 49(4):564-572. DOI 10.1518/001872007X215656. (Pubitemid 47122687)
    • (2007) Human Factors , vol.49 , Issue.4 , pp. 564-572
    • Dixon, S.R.1    Wickens, C.D.2    McCarley, J.S.3
  • 28
    • 38149031678 scopus 로고    scopus 로고
    • Known unknowns: Novelty detection in condition monitoring
    • Girona, Spain, DOI 10.1007/978-3-540-72847-4
    • Quinn JA, Williams CKI. Known unknowns: novelty detection in condition monitoring. IbPRIA, Part 1, Girona, Spain, 2007; 1-6. DOI 10.1007/978-3-540- 72847-4.
    • (2007) IbPRIA, Part 1 , pp. 1-6
    • Quinn, J.A.1    Williams, C.K.I.2
  • 29
    • 0030198250 scopus 로고    scopus 로고
    • Managing temporal worlds for medical trend diagnosis
    • DOI 10.1016/0933-3657(95) 00037-2
    • Haimowitz IJ, Kohane IS. Managing temporal worlds for medical trend diagnosis. Artificial Intelligence in Medicine 1996; 8(3):299-321. DOI 10.1016/0933-3657(95) 00037-2.
    • (1996) Artificial Intelligence in Medicine , vol.8 , Issue.3 , pp. 299-321
    • Haimowitz, I.J.1    Kohane, I.S.2
  • 30
    • 43949166660 scopus 로고
    • Artificial intelligence in medicine: State-of-the-art and future prospects
    • DOI 10.1016/0933-3657(93)90010-Z
    • Uckun NS. Artificial intelligence in medicine: state-of-the-art and future prospects. Artificial Intelligence in Medicine 1993; 5(2):89-91. DOI 10.1016/0933-3657(93)90010-Z.
    • (1993) Artificial Intelligence in Medicine , vol.5 , Issue.2 , pp. 89-91
    • Uckun, N.S.1
  • 31
    • 1242276321 scopus 로고    scopus 로고
    • On-line segmentation algorithm for continuously monitored data in intensive care units
    • Charbonnier S, Becq G, Biot L. On-line segmentation algorithm for continuously monitored data in intensive care units. IEEE Transactions on Biomedical Engineering 2004; 51(3):484-492.
    • (2004) IEEE Transactions on Biomedical Engineering , vol.51 , Issue.3 , pp. 484-492
    • Charbonnier, S.1    Becq, G.2    Biot, L.3
  • 32
    • 0034235151 scopus 로고    scopus 로고
    • Towards symbolization using data-driven extraction of local trends for ICU monitoring
    • DOI 10.1016/S0933-3657(00)00046-4, PII S0933365700000464
    • Calvelo D, Chambrin MC, Pomorski D, Ravaux P. Towards symbolization using data-driven extraction of local trends for ICU monitoring. Artificial Intelligence in Medicine 2000; 19(3):203-223. DOI 10.1016/S0933-3657(00)00046-4. (Pubitemid 30445217)
    • (2000) Artificial Intelligence in Medicine , vol.19 , Issue.3 , pp. 203-223
    • Calvelo, D.1    Chambrin, M.-C.2    Pomorski, D.3    Ravaux, P.4
  • 34
    • 0037379293 scopus 로고    scopus 로고
    • The effect of the interval between blood pressure determinations on the delay in the detection of changes: A computer simulation
    • DOI: 10.1213/01.ANE.0000050772.25404.2E
    • Kennedy R, French R. The effect of the interval between blood pressure determinations on the delay in the detection of changes: A computer simulation. Anesthesia & Analgesia 2003; 96(4):944-948. DOI: 10.1213/01.ANE.0000050772. 25404.2E
    • (2003) Anesthesia and Analgesia , vol.96 , Issue.4 , pp. 944-948
    • Kennedy, R.1    French, R.2
  • 35
    • 33845455091 scopus 로고    scopus 로고
    • Temporal abstraction in intelligent clinical data analysis: A survey
    • DOI 10.1016/j.artmed.2006.08.002, PII S0933365706001345
    • Stacey M, McGregor C. Temporal abstraction in intelligent clinical data analysis: a survey. Artificial Intelligence in Medicine 2007; 39(1):1-24. DOI 10.1016/j.artmed.2006.08.002. (Pubitemid 44895642)
    • (2007) Artificial Intelligence in Medicine , vol.39 , Issue.1 , pp. 1-24
    • Stacey, M.1    McGregor, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.