메뉴 건너뛰기




Volumn , Issue , 2009, Pages 75-85

A brief introduction to optimization via simulation

Author keywords

[No Author keywords available]

Indexed keywords

RESEARCH DEVELOPMENT;

EID: 77951527013     PISSN: 08917736     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/WSC.2009.5429321     Document Type: Conference Paper
Times cited : (125)

References (49)
  • 1
    • 0344182998 scopus 로고    scopus 로고
    • A simulated annealing algorithm with constant temperature for discrete stochastic optimization
    • Alrefaei, M. H., and S. Andradóttir. 1999. A simulated annealing algorithm with constant temperature for discrete stochastic optimization. Management Science 45:748-764.
    • (1999) Management Science , vol.45 , pp. 748-764
    • Alrefaei, M.H.1    Andradóttir, S.2
  • 2
    • 0000930049 scopus 로고
    • A method for discrete stochastic optimization
    • Andradóttir, S. 1995. A method for discrete stochastic optimization. Management Science 41:1946-1961.
    • (1995) Management Science , vol.41 , pp. 1946-1961
    • Andradóttir, S.1
  • 3
    • 0000450089 scopus 로고    scopus 로고
    • Accelerating the convergence of random search methods for discrete stochastic optimization
    • Andradóttir, S. 1999. Accelerating the convergence of random search methods for discrete stochastic optimization. ACM Transactions on Modeling and Computer Simulation 9:349-380.
    • (1999) ACM Transactions on Modeling and Computer Simulation , vol.9 , pp. 349-380
    • Andradóttir, S.1
  • 4
    • 33750530850 scopus 로고    scopus 로고
    • Simulation optimization with countably infinite feasible regions: Efficiency and convergence
    • DOI 10.1145/1176249.1176252
    • Andradóttir, S. 2006. Simulation optimization with countably infinite feasible regions: Efficiency and convergence. ACM Transactions on Modeling and Computer Simulation 16:357-374. (Pubitemid 44664468)
    • (2006) ACM Transactions on Modeling and Computer Simulation , vol.16 , Issue.4 , pp. 357-374
    • Andradottir, S.1
  • 7
    • 77951523160 scopus 로고    scopus 로고
    • Finding feasible systems in the presence of constrains on multiple performance measures
    • forthcoming
    • Batur, D., and S.-H. Kim. 2009. Finding feasible systems in the presence of constrains on multiple performance measures. ACM Transactions on Modeling and Computer Simulation, forthcoming.
    • (2009) ACM Transactions on Modeling and Computer Simulation
    • Batur, D.1    Kim, S.-H.2
  • 8
    • 0002426110 scopus 로고
    • A single-sample multiple decision procedure for ranking means of normal populations with known variances
    • Bechhofer, R. E. 1954. A single-sample multiple decision procedure for ranking means of normal populations with known variances. Annals of Mathematical Statistics 25:16-39.
    • (1954) Annals of Mathematical Statistics , vol.25 , pp. 16-39
    • Bechhofer, R.E.1
  • 9
    • 0347556828 scopus 로고    scopus 로고
    • Using ranking and selection to 'clean up' after simulation optimization
    • Boesel, J., B. L. Nelson, and S.-H. Kim. 2003. Using ranking and selection to 'clean up' after simulation optimization. Operations Research 51:814-825.
    • (2003) Operations Research , vol.51 , pp. 814-825
    • Boesel, J.1    Nelson, B.L.2    Kim, S.-H.3
  • 13
    • 0035460965 scopus 로고    scopus 로고
    • New two-stage and sequential procedures for selecting the best simulated system
    • Chick, S. E., and K. Inoue. 2001. New two-stage and sequential procedures for selecting the best simulated system. Operations Research 49:732-743. (Pubitemid 34011324)
    • (2001) Operations Research , vol.49 , Issue.5 , pp. 732-743
    • Chick, S.E.1    Inoue, K.2
  • 14
    • 0012850715 scopus 로고
    • Note on Anderson's sequential procedures with triangular boundary
    • Fabian, V. 1974. Note on Anderson's sequential procedures with triangular boundary. Annals of Statistics 2:170-176.
    • (1974) Annals of Statistics , vol.2 , pp. 170-176
    • Fabian, V.1
  • 15
    • 0012260296 scopus 로고    scopus 로고
    • Optimization for simulation: Theory vs. practice
    • Fu, M. C. 2002. Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing 14:192-215.
    • (2002) INFORMS Journal on Computing , vol.14 , pp. 192-215
    • Fu, M.C.1
  • 16
    • 56849096061 scopus 로고    scopus 로고
    • What you should know about simulation and derivatives
    • Fu, M. C. 2008. What you should know about simulation and derivatives. Naval Research Logistics 55:723-736.
    • (2008) Naval Research Logistics , vol.55 , pp. 723-736
    • Fu, M.C.1
  • 18
    • 84976859194 scopus 로고
    • Likelihood ratio gradient estimation for stochastic systems
    • Glynn, P. W. 1990. Likelihood ratio gradient estimation for stochastic systems. Communications of the ACM 33:75-84.
    • (1990) Communications of the ACM , vol.33 , pp. 75-84
    • Glynn, P.W.1
  • 19
    • 0000554054 scopus 로고    scopus 로고
    • Stochastic comparison algorithm for discrete optimization with estimation
    • Gong, W. B., Y. C. Ho, and W. Zhai. 1999. Stochastic comparison algorithm for discrete optimization with estimation. SIAM Journal on Optimization 10:384-404.
    • (1999) SIAM Journal on Optimization , vol.10 , pp. 384-404
    • Gong, W.B.1    Ho, Y.C.2    Zhai, W.3
  • 20
    • 0020802518 scopus 로고
    • PERTURBATION ANALYSIS and OPTIMIZATION of QUEUEING NETWORKS
    • Ho, Y. C., and X.-R. Cao. 1983. Optimization and perturbation analysis of queueing networks. Journal of Optimization Theory and Applications 40:559-582. (Pubitemid 14449623)
    • (1983) Journal of Optimization Theory and Applications , vol.40 , Issue.4 , pp. 559-582
    • Ho, Y.C.1    Cao, X.2
  • 21
    • 61449186343 scopus 로고    scopus 로고
    • Estimating quantile sensitivities
    • Hong, L. J. 2009. Estimating quantile sensitivities. Operations Research 57: 118-130.
    • (2009) Operations Research , vol.57 , pp. 118-130
    • Hong, L.J.1
  • 22
    • 77951556272 scopus 로고    scopus 로고
    • Pathwise estimation of probability sensitivities through terminating and steady-state simulations
    • forthcoming
    • Hong, L. J., and G. Liu. 2009. Pathwise estimation of probability sensitivities through terminating and steady-state simulations. Operations Research, forthcoming.
    • (2009) Operations Research
    • Hong, L.J.1    Liu, G.2
  • 23
    • 20544469242 scopus 로고    scopus 로고
    • The tradeoff between sampling and switching: New sequential procedures for indifference-zone selection
    • Hong, L. J., and B. L. Nelson. 2005. The tradeoff between sampling and switching: New sequential procedures for indifference-zone selection. IIE Transactions 37:623-634.
    • (2005) IIE Transactions , vol.37 , pp. 623-634
    • Hong, L.J.1    Nelson, B.L.2
  • 24
    • 33644525898 scopus 로고    scopus 로고
    • Discrete optimization via simulation using COMPASS
    • DOI 10.1287/opre.1050.0237
    • Hong, L. J., and B. L. Nelson. 2006. Discrete Optimization via Simulation using COMPASS. Operations Research 54:115-129. (Pubitemid 43296745)
    • (2006) Operations Research , vol.54 , Issue.1 , pp. 115-129
    • Jeff Hong, L.1    Nelson, B.L.2
  • 25
    • 34648813290 scopus 로고    scopus 로고
    • A framework for locally convergent random search algorithms for discrete optimization via simulation
    • Hong, L. J., and B. L. Nelson. 2007a. A framework for locally convergent random search algorithms for discrete optimization via simulation. ACM Transactions on Modeling and Computer Simulation 17:19/1-19/22.
    • (2007) ACM Transactions on Modeling and Computer Simulation , vol.17
    • Hong, L.J.1    Nelson, B.L.2
  • 26
    • 34248190139 scopus 로고    scopus 로고
    • Selecting the best system when systems are revealed sequentially
    • Hong, L. J., and B. L. Nelson. 2007b. Selecting the best system when systems are revealed sequentially. IIE Transactions 39:723-734.
    • (2007) IIE Transactions , vol.39 , pp. 723-734
    • Hong, L.J.1    Nelson, B.L.2
  • 27
    • 37249005626 scopus 로고    scopus 로고
    • A model reference adaptive search method for global optimization
    • DOI 10.1287/opre.1060.0367
    • Hu, J., M.C. Fu, and S.I. Marcus. 2007. A model reference adaptive search method for global optimization. Operations Research 55:549-568. (Pubitemid 351159509)
    • (2007) Operations Research , vol.55 , Issue.3 , pp. 549-568
    • Hu, J.1    Fu, M.C.2    Marcus, S.I.3
  • 28
    • 0001079593 scopus 로고
    • Stochastic Estimation of the Maximum of a Regression Function
    • Kiefer, J., and Wolfowitz, J. 1952. Stochastic Estimation of the Maximum of a Regression Function. Annals of Mathematical Statistics 23:462-466.
    • (1952) Annals of Mathematical Statistics , vol.23 , pp. 462-466
    • Kiefer, J.1    Wolfowitz, J.2
  • 31
    • 33744788406 scopus 로고    scopus 로고
    • On the asymptotic validity of fully sequential selection procedures for steady-state simulation
    • DOI 10.1287/opre.1060.0281
    • Kim, S.-H., and B. L. Nelson. 2006. On the asymptotic validity of fully sequential selection procedures for steady-state simulation. Operations Research 54:475-488. (Pubitemid 43838360)
    • (2006) Operations Research , vol.54 , Issue.3 , pp. 475-488
    • Kim, S.-H.1    Nelson, B.L.2
  • 35
    • 0001338090 scopus 로고
    • Using Common Random Numbers for Indifference-Zone Selection and Multiple Comparisons in Simulation
    • Nelson, B. L., and F. J. Matejcik. 1995. Using Common Random Numbers for Indifference-Zone Selection and Multiple Comparisons in Simulation. Management Science 41:1935-1945.
    • (1995) Management Science , vol.41 , pp. 1935-1945
    • Nelson, B.L.1    Matejcik, F.J.2
  • 36
    • 0035521447 scopus 로고    scopus 로고
    • Simple procedures for selecting the best simulated system when the number of alternatives is large
    • Nelson, B. L., J. Swann, D. Goldsman, and W. Song. 2001. Simple procedures for selecting the best simulated system when the number of alternatives is large. Operations Research 49:950-963.
    • (2001) Operations Research , vol.49 , pp. 950-963
    • Nelson, B.L.1    Swann, J.2    Goldsman, D.3    Song, W.4
  • 38
    • 0000145493 scopus 로고
    • A sequential procedure for selecting the population with the largest mean from k normal populations
    • Paulson, E. 1964. A sequential procedure for selecting the population with the largest mean from k normal populations. Annals of Mathematical Statistics 35:174-180.
    • (1964) Annals of Mathematical Statistics , vol.35 , pp. 174-180
    • Paulson, E.1
  • 40
    • 33646085531 scopus 로고    scopus 로고
    • A sequential procedure for neighborhood selection-of-the-best in optimization via simulation
    • Pichitlamken, J., B. L. Nelson, and L. J. Hong. 2006. A sequential procedure for neighborhood selection-of-the-best in optimization via simulation. European Journal of Operational Research 173:283-298.
    • (2006) European Journal of Operational Research , vol.173 , pp. 283-298
    • Pichitlamken, J.1    Nelson, B.L.2    Hong, L.J.3
  • 42
    • 0024735795 scopus 로고
    • Sensitivity analysis for simulations via likelihood ratios
    • Reiman, M., and A. Weiss. 1989. Sensitivity analysis for simulations via likelihood ratios. Operations Research 37:830-844. (Pubitemid 20599548)
    • (1989) Operations Research , vol.37 , Issue.5 , pp. 830-844
    • Reiman Martin, I.1    Weiss, A.2
  • 43
    • 0001552833 scopus 로고
    • On two-stage selection procedures and related probability-inequalities
    • Rinott, Y. 1978. On two-stage selection procedures and related probability-inequalities. Communications in Statistics A7:799-811.
    • (1978) Communications in Statistics , vol.A7 , pp. 799-811
    • Rinott, Y.1
  • 45
    • 0000350399 scopus 로고    scopus 로고
    • Nested Partitions Method for Stochastic Optimization
    • DOI 10.1023/A:1010081212560
    • Shi, L., and S. Ólafsson. 2000. Nested partitions method for stochastic optimization. Methodology and Computing in Applied Probability 2:271-291. (Pubitemid 33210831)
    • (2000) METHODOLOGY and COMPUTING in APPLIED PROBABILITY , vol.2 , Issue.3 , pp. 271-292
    • Shi, L.1    Olafsson, S.2
  • 46
    • 0026839090 scopus 로고
    • Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
    • Spall, J. C. 1992. Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Transactions on Automatic Control 37:332-341.
    • (1992) IEEE Transactions on Automatic Control , vol.37 , pp. 332-341
    • Spall, J.C.1
  • 47
  • 48
    • 77951614509 scopus 로고    scopus 로고
    • Industrial Strength COMPASS: A Comprehensive Algorithm and Software for Optimization via Simulation
    • forthcoming
    • Xu, J., B. L. Nelson, and L. J. Hong. 2009. Industrial Strength COMPASS: A Comprehensive Algorithm and Software for Optimization via Simulation. ACM Transactions on Modeling and Computer Simulation, forthcoming.
    • (2009) ACM Transactions on Modeling and Computer Simulation
    • Xu, J.1    Nelson, B.L.2    Hong, L.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.