-
1
-
-
0003975247
-
-
Cambridge University Press
-
J. Bertoin, Lévy Processes, Cambridge University Press, 1996.
-
(1996)
Lévy Processes
-
-
Bertoin, J.1
-
2
-
-
68449103869
-
A Brownian sheet martingale with the same marginals as the arithmetic average of geometric Brownian motion
-
D. Baker and M. Yor, A Brownian sheet martingale with the same marginals as the arithmetic average of geometric Brownian motion, Electron. J. Probab. 14-52 (2009), 1532-1540.
-
(2009)
Electron. J. Probab.
, vol.14-52
, pp. 1532-1540
-
-
Baker, D.1
Yor, M.2
-
3
-
-
50249149492
-
On the qualitative effect of volatility and duration on prices of Asian options
-
P. Carr, C.-O. Ewald and Y. Xiao, On the qualitative effect of volatility and duration on prices of Asian options, Finance Research Letters 5-3 (2008), 162-171.
-
(2008)
Finance Research Letters
, vol.5
, pp. 162-171
-
-
Carr, P.1
Ewald, C.-O.2
Xiao, Y.3
-
4
-
-
0001664167
-
The sharp Markov property of Levy sheets
-
R. C. Dalang and J. B. Walsh, The sharp Markov property of Levy sheets, Ann. Probab. 20-2 (1992), 591-626.
-
(1992)
Ann. Probab.
, vol.20
, Issue.2
, pp. 591-626
-
-
Dalang, R.C.1
Walsh, J.B.2
-
5
-
-
33747357467
-
Generalized sweeping-out and probability
-
J. L. Doob, Generalized sweeping-out and probability, J. Funct. Anal. 2 (1968), 207-225.
-
(1968)
J. Funct. Anal.
, vol.2
, pp. 207-225
-
-
Doob, J.L.1
-
6
-
-
0013212752
-
Stopping distributions for right processes, Probab
-
N. Falkner and P. J. Fitzsimmons, Stopping distributions for right processes, Probab. Theory Related Fields 89-3 (1991), 301-318.
-
(1991)
Theory Related Fields
, vol.89
, Issue.3
, pp. 301-318
-
-
Falkner, N.1
Fitzsimmons, P.J.2
-
7
-
-
85036740272
-
Converse Jensen inequality, to appear in Rocky Mountain
-
P. J. Fitzsimmons, Converse Jensen inequality, to appear in Rocky Mountain J. Math.
-
J. Math.
-
-
Fitzsimmons, P.J.1
-
8
-
-
0001846760
-
Martin boundaries on wiener space, in: Diffusion processes and related problems in analysis
-
M. Pinsky ed., Progress in Probability n° Birkhäuser
-
H. Föllmer, Martin boundaries on Wiener space, in: Diffusion Processes and Related Problems in Analysis, Vol.I: Diffusions in Analysis and Geometry, M. Pinsky ed., Progress in Probability n° 22, Birkhäuser, 1990, p. 3-16.
-
(1990)
Diffusions in Analysis and Geometry
, vol.1
, Issue.22
, pp. 3-16
-
-
Föllmer, H.1
-
9
-
-
73349086550
-
A construction of processes with one-dimensional martingale marginals, based upon path-space Ornstein- Uhlenbeck processes and the Brownian sheet
-
F. Hirsch and M. Yor, A construction of processes with one-dimensional martingale marginals, based upon path-space Ornstein- Uhlenbeck processes and the Brownian sheet, J. Math. Kyoto Univ. 49-2 (2009), 389-417.
-
(2009)
J. Math. Kyoto Univ.
, vol.49
, Issue.2
, pp. 389-417
-
-
Hirsch, F.1
Yor, M.2
-
11
-
-
77951270331
-
Markov-Komposition und eine Anwendung auf Martingale
-
H. G. Kellerer, Markov-Komposition und eine Anwendung auf Martingale, Math. Ann. 14 (1971), 1-16.
-
(1971)
Math. Ann.
, vol.14
, pp. 1-16
-
-
Kellerer, H.G.1
-
12
-
-
12144274928
-
Making markov martingales meet marginals: With explicit constructions
-
D. B. Madan and M. Yor, Making Markov martingales meet marginals: with explicit constructions, Bernoulli 8-4 (2002), 509-536.
-
(2002)
Bernoulli
, vol.8
, Issue.4
, pp. 509-536
-
-
Madan, D.B.1
Yor, M.2
-
13
-
-
85036763303
-
The stopping distribution of a Markov process
-
H. Rost, The stopping distribution of a Markov process, Invent. Math. 198 (1971), 99-122.
-
(1971)
Invent. Math.
, vol.198
, pp. 99-122
-
-
Rost, H.1
-
16
-
-
0003291564
-
Stochastic processes and orthogonal polynomials
-
Springer
-
W. Schoutens, Stochastic Processes and Orthogonal Polynomials, Lect. Notes in Stat, n° 146, Springer, 2000.
-
(2000)
Lect. Notes in Stat, N°
, vol.146
-
-
Schoutens, W.1
-
17
-
-
0000649228
-
The existence of probability measures with given marginals
-
V. Strassen, The existence of probability measures with given marginals, Ann. Math. Stat. 36 (1965), 423-439.
-
(1965)
Ann. Math. Stat.
, vol.36
, pp. 423-439
-
-
Strassen, V.1
|