-
1
-
-
0028076764
-
The ancient regulatory-protein family of WD-repeat proteins
-
Neer EJ, Schmidt CJ, Nambudripad R, Smith TF. The ancient regulatory-protein family of WD-repeat proteins. Nature 1994;371:297-300.
-
(1994)
Nature
, vol.371
, pp. 297-300
-
-
Neer, E.J.1
Schmidt, C.J.2
Nambudripad, R.3
Smith, T.F.4
-
4
-
-
0035664074
-
Repeat proteins: Structure characteristics, biological function, and their involvement in human diseases
-
Li D, Roberts RWD. Repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell. Mol Life Sci 2001;58:2085-2097.
-
(2001)
Cell. Mol Life Sci
, vol.58
, pp. 2085-2097
-
-
Li, D.1
Roberts, R.W.D.2
-
5
-
-
33751227501
-
DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint
-
Sansam CL, Shepard JL, Lai K, Ianari A, Danielian PS, Amsterdam A, Hopkins N, Lees JA. DTL/CDT2 is essential for both CDT1 regulation and the early G2/M checkpoint. Genes Dev 2006;20:3117-3129.
-
(2006)
Genes Dev
, vol.20
, pp. 3117-3129
-
-
Sansam, C.L.1
Shepard, J.L.2
Lai, K.3
Ianari, A.4
Danielian, P.S.5
Amsterdam, A.6
Hopkins, N.7
Lees, J.A.8
-
6
-
-
33747873322
-
A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1
-
Jin JP, Arias EE, Chen J, Harper JW, Walter JC. A family of diverse Cul4-Ddb1-interacting proteins includes Cdt2, which is required for S phase destruction of the replication factor Cdt1. Mol Cell 2006; 23:709-721.
-
(2006)
Mol Cell
, vol.23
, pp. 709-721
-
-
Jin, J.P.1
Arias, E.E.2
Chen, J.3
Harper, J.W.4
Walter, J.C.5
-
7
-
-
34250799719
-
Cdc20; a WD40 activator for a cell cycle degradation machine
-
Yu H. Cdc20; a WD40 activator for a cell cycle degradation machine. Mol Cell 2007;27:3-16.
-
(2007)
Mol Cell
, vol.27
, pp. 3-16
-
-
Yu, H.1
-
8
-
-
66149174895
-
The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana
-
Zeng CJT, Lee YRJ, Liu B. The WD40 repeat protein NEDD1 functions in microtubule organization during cell division in Arabidopsis thaliana. Plant Cell 2009;21:1129-1140.
-
(2009)
Plant Cell
, vol.21
, pp. 1129-1140
-
-
Zeng, C.J.T.1
Lee, Y.R.J.2
Liu, B.3
-
9
-
-
0034673929
-
Groucho/TLE family proteins and transcriptional repression
-
DOI 10.1016/S0378-1119(00)00161-X, PII S037811190000161X
-
Chen G, Courey AJ. Groucho/TLE family proteins and transcriptional repression. Gene 2000;249:1-16. (Pubitemid 30265483)
-
(2000)
Gene
, vol.249
, Issue.1-2
, pp. 1-16
-
-
Chen, G.1
Courey, A.J.2
-
10
-
-
20444417108
-
WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development
-
Wysocka. J, Swigut T, Milne TA, Dou YL, Zhang X, Burlingame AL, Roeder RG, Brivanlou AH, Allis CD. WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 2005;121:859-872.
-
(2005)
Cell
, vol.121
, pp. 859-872
-
-
Wysocka, J.1
Swigut, T.2
Milne, T.A.3
Dou, Y.L.4
Zhang, X.5
Burlingame, A.L.6
Roeder, R.G.7
Brivanlou, A.H.8
Allis, C.D.9
-
11
-
-
20144363347
-
The murine polycomb group protein. EED is required for global histone H3 iysine-27 methylation
-
Montgomery ND, Yee D, Chen A, Kalantry S, Chamberlain SJ, Otte AP, Magnuson T. The murine polycomb group protein. EED is required for global histone H3 iysine-27 methylation. Curr Biol 2005;15:942-947.
-
(2005)
Curr Biol
, vol.15
, pp. 942-947
-
-
Montgomery, N.D.1
Yee, D.2
Chen, A.3
Kalantry, S.4
Chamberlain, S.J.5
Otte, A.P.6
Magnuson, T.7
-
12
-
-
33746828109
-
Molecular recognition of histone H3 by the WD40 protein WDR5
-
Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 2006;13:698-703.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 698-703
-
-
Couture, J.F.1
Collazo, E.2
Trievel, R.C.3
-
13
-
-
33646083683
-
Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5
-
Han ZF, Quo L, Wang HY, Shen Y, Deng XW, Chai JJ. Structural basis for the specific recognition of methylated histone H3 lysine 4 by the WD-40 protein WDR5. Mol Cell. 2006;22:137-144.
-
(2006)
Mol Cell
, vol.22
, pp. 137-144
-
-
Han, Z.F.1
Quo, L.2
Wang, H.Y.3
Shen, Y.4
Deng, X.W.5
Chai, J.J.6
-
14
-
-
33748949071
-
Structural basis for molecular recognition and presentation of histone H3 by WDR5
-
Schuetz A, Allali-Hassani A, Martin F, Loppnau P, Vedadi M, Bochkarev A, Plotnikov AN, Arrowsmith CH, Min JR. Structural basis for molecular recognition and presentation of histone H3 by WDR5. EMBO J 2006;25:4245-4252.
-
(2006)
EMBO J
, vol.25
, pp. 4245-4252
-
-
Schuetz, A.1
Allali-Hassani, A.2
Martin, F.3
Loppnau, P.4
Vedadi, M.5
Bochkarev, A.6
Plotnikov, A.N.7
Arrowsmith, C.H.8
Min, J.R.9
-
15
-
-
33746849256
-
Regulation of MLL1 H3 K4 methyltransferase activity by its core components
-
Dou YL, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG. Regulation of MLL1 H3 K4 methyltransferase activity by its core components. Nat Struct Mol Biol 2006;13:713-719.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 713-719
-
-
Dou, Y.L.1
Milne, T.A.2
Ruthenburg, A.J.3
Lee, S.4
Lee, J.W.5
Verdine, G.L.6
Allis, C.D.7
Roeder, R.G.8
-
16
-
-
57749084606
-
Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide
-
Patel A, Dharmarajan V, Cosgrove MS. Structure of WDR5 bound to mixed lineage leukemia protein-1 peptide. J Biol Chem 2008;283: 32158-32161.
-
(2008)
J Biol Chem
, vol.283
, pp. 32158-32161
-
-
Patel, A.1
Dharmarajan, V.2
Cosgrove, M.S.3
-
17
-
-
57749108294
-
A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex
-
Patel A, Vought VE, Dharmarajan V, Cosgrove MS. A conserved arginine-containing motif crucial for the assembly and enzymatic activity of the mixed lineage leukemia protein-1 core complex. J Biol Chem 2008;283:32162- 32175.
-
(2008)
J Biol Chem
, vol.283
, pp. 32162-32175
-
-
Patel, A.1
Vought, V.E.2
Dharmarajan, V.3
Cosgrove, M.S.4
-
18
-
-
44149101970
-
Diverse functions of WD40 repeat proteins in histone recognition
-
Suganuma T, Pattenden SG, Workman JL. Diverse functions of WD40 repeat proteins in histone recognition. Genes Dev 2008;22: 1265-1268.
-
(2008)
Genes Dev
, vol.22
, pp. 1265-1268
-
-
Suganuma, T.1
Pattenden, S.G.2
Workman, J.L.3
-
19
-
-
44149123117
-
Structural basis of histone H4 recognition by p55
-
Song JJ, Garlick JD, Kingston RE. Structural basis of histone H4 recognition by p55. Genes Dev 2008;22:1313-1318.
-
(2008)
Genes Dev
, vol.22
, pp. 1313-1318
-
-
Song, J.J.1
Garlick, J.D.2
Kingston, R.E.3
-
20
-
-
0037509859
-
The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage
-
DOI 10.1016/S0092-8674(03)00316-7
-
Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 2003;113:357-367. (Pubitemid 36556117)
-
(2003)
Cell
, vol.113
, Issue.3
, pp. 357-367
-
-
Groisman, R.1
Polanowska, J.2
Kuraoka, I.3
Sawada, J.-I.4
Saijo, M.5
Drapkin, R.6
Kisselev, A.F.7
Tanaka, K.8
Nakatani, Y.9
-
21
-
-
57749198023
-
Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex
-
Scrima A, Konickova R, Czyzewski BK, Kawasaki Y, Jeffrey PD, Groisman R, Nakatani Y, Iwai S, Pavletich NP, Thoma NH. Structural basis of UV DNA-damage recognition by the DDB1-DDB2 complex. Cell 2008;135:1213-1223.
-
(2008)
Cell
, vol.135
, pp. 1213-1223
-
-
Scrima, A.1
Konickova, R.2
Czyzewski, B.K.3
Kawasaki, Y.4
Jeffrey, P.D.5
Groisman, R.6
Nakatani, Y.7
Iwai, S.8
Pavletich, N.P.9
Thoma, N.H.10
-
23
-
-
33750509178
-
CUL4/DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation
-
Higa LA, Wu M, Ye T, Kobayashi R, Sun H, Zhang H. CUL4/DDB1 ubiquitin ligase interacts with multiple WD40-repeat proteins and regulates histone methylation. Nat Cell Biol 2006;8:1277-1283.
-
(2006)
Nat Cell Biol
, vol.8
, pp. 1277-1283
-
-
Higa, L.A.1
Wu, M.2
Ye, T.3
Kobayashi, R.4
Sun, H.5
Zhang, H.6
-
24
-
-
33751112293
-
DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases
-
He YJ, McCall CM, Zeng Y, Xiong Y. DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev 2006;20:2949-2954.
-
(2006)
Genes Dev
, vol.20
, pp. 2949-2954
-
-
He, Y.J.1
McCall, C.M.2
Zeng, Y.3
Xiong, Y.4
-
25
-
-
41649117158
-
40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase
-
Hu J, Zacharek S, He YJ, Lee H, Shumway S, Duronio RJ, Xiong YWD. 40 protein FBW5 promotes ubiquitination of tumor suppressor TSC2 by DDB1-CUL4-ROC1 ligase. Genes Dev 2008;22:866-871.
-
(2008)
Genes Dev
, vol.22
, pp. 866-871
-
-
Hu, J.1
Zacharek, S.2
He, Y.J.3
Lee, H.4
Shumway, S.5
Duronio, R.J.6
Xiong, Y.W.D.7
-
26
-
-
40549123676
-
MTORC1 signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase
-
Ghosh P, Wu M, Zhang H, Sun H. MTORC1 signaling requires proteasomal function and the involvement of CUL4-DDB1 ubiquitin E3 ligase. Cell Cycle 2008;7:373-381.
-
(2008)
Cell Cycle
, vol.7
, pp. 373-381
-
-
Ghosh, P.1
Wu, M.2
Zhang, H.3
Sun, H.4
-
27
-
-
66349105688
-
The WD40 repeat protein WDR23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans
-
Choe KP, Przybysz AJ, Strange K. The WD40 repeat protein WDR23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Mol Cell Biol 2009;29:2704-2715.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 2704-2715
-
-
Choe, K.P.1
Przybysz, A.J.2
Strange, K.3
-
28
-
-
0030745646
-
Apaf-1, a human protein homologous to Celegans CED-4, participates in cytochrome c-dependent activation of caspase-3
-
Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90:405-413.
-
(1997)
Cell
, vol.90
, pp. 405-413
-
-
Zou, H.1
Henzel, W.J.2
Liu, X.3
Lutschg, A.4
Wang, X.5
-
29
-
-
0036187036
-
Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation
-
Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9: 423-432.
-
(2002)
Mol Cell
, vol.9
, pp. 423-432
-
-
Acehan, D.1
Jiang, X.2
Morgan, D.G.3
Heuser, J.E.4
Wang, X.5
Akey, C.W.6
-
30
-
-
33344468896
-
Monad, a WD40 repeat protein, promotes apoptosis induced by INF-α
-
Saeki M, Irie Y, Ni L, Yoshida M, Itsuki Y, Kamisaki Y. Monad, a WD40 repeat protein, promotes apoptosis induced by INF-α. Biochem Biophys Res Commun 2006;342:568-572.
-
(2006)
Biochem Biophys Res Commun
, vol.342
, pp. 568-572
-
-
Saeki, M.1
Irie, Y.2
Ni, L.3
Yoshida, M.4
Itsuki, Y.5
Kamisaki, Y.6
-
31
-
-
33750627440
-
Mechanical aspects of apoptosome assembly
-
Shi Y. Mechanical aspects of apoptosome assembly. Curr Opin Cell Biol 2006;18:677-684.
-
(2006)
Curr Opin Cell Biol
, vol.18
, pp. 677-684
-
-
Shi, Y.1
-
32
-
-
34447308515
-
DDB2 is a haploinsufficient tumor suppressor and controls spontaneous germ cell apoptosis
-
Itoh T, Iwashita S, Cohen MB, Meyerholz DK, Linn S. DDB2 is a haploinsufficient tumor suppressor and controls spontaneous germ cell apoptosis. Hum Mol Genet 2007;16:1578-1586.
-
(2007)
Hum Mol Genet
, vol.16
, pp. 1578-1586
-
-
Itoh, T.1
Iwashita, S.2
Cohen, M.B.3
Meyerholz, D.K.4
Linn, S.5
-
33
-
-
0034993094
-
Protein folds propelled by diversity
-
Paoli M. Protein folds propelled by diversity. Prog Biophys Mol Biol 2001;76:103-130.
-
(2001)
Prog Biophys Mol Biol
, vol.76
, pp. 103-130
-
-
Paoli, M.1
-
34
-
-
0036226347
-
Novel sequences propel familiar folds
-
Jawad Z, Paoli M. Novel sequences propel familiar folds. Structure 2002;10:447-454.
-
(2002)
Structure
, vol.10
, pp. 447-454
-
-
Jawad, Z.1
Paoli, M.2
-
35
-
-
0029593456
-
The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2
-
Wall MA, Coleman DE, Lee E, Iniguez-Lluhi JA, Posner BA, Gilman AG, Sprang SR. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 1995;83:1047-1058.
-
(1995)
Cell
, vol.83
, pp. 1047-1058
-
-
Wall, M.A.1
Coleman, D.E.2
Lee, E.3
Iniguez-Lluhi, J.A.4
Posner, B.A.5
Gilman, A.G.6
Sprang, S.R.7
-
36
-
-
0029664589
-
The 2.0̊ crystal structure of a heterotrimeric G protein
-
Lambright DG, Sondek J, Bohm A, Skiba NP, Hamm HE, Sigler PB. The 2.0̊ crystal structure of a heterotrimeric G protein. Nature 1996;379:311-319.
-
(1996)
Nature
, vol.379
, pp. 311-319
-
-
Lambright, D.G.1
Sondek, J.2
Bohm, A.3
Skiba, N.P.4
Hamm, H.E.5
Sigler, P.B.6
-
37
-
-
0033954256
-
The protein data bank
-
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res 2000;28:235-242.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 235-242
-
-
Berman, H.M.1
Westbrook, J.2
Feng, Z.3
Gilliland, G.4
Bhat, T.N.5
Weissig, H.6
Shindyalov, I.N.7
Bourne, P.E.8
-
39
-
-
0032168569
-
Catalytic triads and their relatives
-
Dodson G, Wlodawer A. Catalytic triads and their relatives. Trends Biochem Sci 1998;23:347-352.
-
(1998)
Trends Biochem Sci
, vol.23
, pp. 347-352
-
-
Dodson, G.1
Wlodawer, A.2
-
40
-
-
0036882394
-
Serine protease mechanism and specificity
-
Hedstrom L. Serine protease mechanism and specificity. Chem Rev 2002;102:4501-4524.
-
(2002)
Chem Rev
, vol.102
, pp. 4501-4524
-
-
Hedstrom, L.1
-
41
-
-
27144523783
-
The catalytic triad of serine peptidases
-
Polgar L. The catalytic triad of serine peptidases. Cell Mol Life Sci 2005;62:2161-2172.
-
(2005)
Cell Mol Life Sci
, vol.62
, pp. 2161-2172
-
-
Polgar, L.1
-
44
-
-
0037019547
-
Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: An ab initio QM/MM study
-
Zhang Y, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM study. J Am Chem Soc 2002;124:10572-10577.
-
(2002)
J Am Chem Soc
, vol.124
, pp. 10572-10577
-
-
Zhang, Y.1
Kua, J.2
McCammon, J.A.3
-
45
-
-
0034673180
-
Catalytic mechanism of a C-C hydrolase enzyme: Evidence for a GemDiol intermediate, not an Acyl enzyme
-
Fleming SM, Robertson TA, Langley GJ, Bugg TDH. Catalytic mechanism of a C-C hydrolase enzyme: evidence for a GemDiol intermediate, not an Acyl enzyme. Biochemistry 2000;39:1522-1531.
-
(2000)
Biochemistry
, vol.39
, pp. 1522-1531
-
-
Fleming, S.M.1
Robertson, T.A.2
Langley, G.J.3
Bugg, T.D.H.4
-
46
-
-
12344333653
-
The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism
-
DOI 10.1016/j.jmb.2004.11.033, PII S0022283604014822
-
Dunn G, Montgomery MG, Mohammed F, Coker A, Cooper JB, Robertson T, Garcia J-L, Bugg TDH, Wood SP. The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism. J Mol Biol 2005;346:253-265. (Pubitemid 40128319)
-
(2005)
Journal of Molecular Biology
, vol.346
, Issue.1
, pp. 253-265
-
-
Dunn, G.1
Montgomery, M.G.2
Mohammed, F.3
Coker, A.4
Cooper, J.B.5
Robertson, T.6
Garcia, J.-L.7
Bugg, T.D.H.8
Wood, S.P.9
-
47
-
-
40849094350
-
Identification and characterization of (1R,6R)-2-succinyl-6-hydroxy-2,4- Cyclohexadiene-1-carboxylate synthase in the menaquinone biosynthesis of Escherichia coli
-
DOI 10.1021/bi7023755
-
Jiang M, Chen X, Guo ZF, Cao Y, Chen M, Guo Z. Identification and characterization of (1R, 6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1- carboxylate synthase in the menaquinone biosynthesis of Escherichia coli. Biochemistry 2008;47:3426-3434. (Pubitemid 351399231)
-
(2008)
Biochemistry
, vol.47
, Issue.11
, pp. 3426-3434
-
-
Jiang, M.1
Chen, X.2
Guo, Z.-F.3
Cao, Y.4
Chen, M.5
Guo, Z.6
-
48
-
-
37849041615
-
The noncatalytic triad of α-amylases: A novel structural motif involved in conformational stability
-
Marx JC, Poncin J, Simorre JP, Ramteke PW, Feller G. The noncatalytic triad of α-amylases: a novel structural motif involved in conformational stability. Proteins: Struct Funct Bioinformatics 2007;70: 320-328.
-
(2007)
Proteins: Struct Funct Bioinformatics
, vol.70
, pp. 320-328
-
-
Marx, J.C.1
Poncin, J.2
Simorre, J.P.3
Ramteke, P.W.4
Feller, G.5
-
49
-
-
30244443082
-
Nature of H-bonding in clusters, liquids, and enzymes: An ab initio, natural bond orbital perspective
-
Weinhold F. Nature of H-bonding in clusters, liquids, and enzymes: an ab initio, natural bond orbital perspective. J Mol Struct. (THEOCHEM) 1997;399:181-197.
-
(1997)
J Mol Struct. (THEOCHEM)
, vol.399
, pp. 181-197
-
-
Weinhold, F.1
-
50
-
-
0032538783
-
Cooperative hydrogen bonding and enzyme catalysis
-
Guo H, Salahub DR. Cooperative hydrogen bonding and enzyme catalysis. Angew Chem Int Ed 1998;37:2985-2990.
-
(1998)
Angew Chem Int Ed
, vol.37
, pp. 2985-2990
-
-
Guo, H.1
Salahub, D.R.2
-
51
-
-
0000724150
-
Solvent influence on the stability of the peptide hydrogen bond: A supramolecular cooperative effect
-
Guo H, Karplus M. Solvent influence on the stability of the peptide hydrogen bond: a supramolecular cooperative effect. J Phys Chem 1994;98:7104-7105.
-
(1994)
J Phys Chem
, vol.98
, pp. 7104-7105
-
-
Guo, H.1
Karplus, M.2
-
53
-
-
0037065689
-
Consistent helicities from CD and template t/c data for N-templated polyalanines: Progress toward resolution of the alanine helicity problem
-
Kennedy RJ, Tsang KY, Kemp DS. Consistent helicities from CD and template t/c data for N-templated polyalanines: progress toward resolution of the alanine helicity problem. J Am Chem Soc 2002;124:934-944.
-
(2002)
J Am Chem Soc
, vol.124
, pp. 934-944
-
-
Kennedy, R.J.1
Tsang, K.Y.2
Kemp, D.S.3
-
54
-
-
27144463436
-
Enthalpies of hydrogen-bonds in α-helical peptides. An ONIOM DFT/AM1 study
-
DOI 10.1021/ja053839t
-
Wieczorek R, Dannenberg JJ. Enthalpies of hydrogen-bonds in αhelical peptides. an ONIOM DFT/AM1 study. J Am Chem Soc 2005;127:14534-14535. (Pubitemid 41510970)
-
(2005)
Journal of the American Chemical Society
, vol.127
, Issue.42
, pp. 14534-14535
-
-
Wieczorek, R.1
Dannenberg, J.J.2
-
55
-
-
0343442498
-
Many-body effects in systems of peptide hydrogen-bonded networks and their contributions to ligand binding: A comparison of the performances of DFT and polarizable molecular mechanics
-
Guo H, Gresh N, Roques BP, Salahub DR. Many-body effects in systems of peptide hydrogen-bonded networks and their contributions to ligand binding: a comparison of the performances of DFT and polarizable molecular mechanics. J Phys Chem B 2000;104: 9746.
-
(2000)
J Phys Chem B
, vol.104
, pp. 9746
-
-
Guo, H.1
Gresh, N.2
Roques, B.P.3
Salahub, D.R.4
-
56
-
-
34247897078
-
The origins of femtomolar protein-ligand binding: Hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site
-
DeChancie J, Houk KN. The origins of femtomolar protein-ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site. J Am Chem Soc 2007;129: 5419-5429.
-
(2007)
J Am Chem Soc
, vol.129
, pp. 5419-5429
-
-
Dechancie, J.1
Houk, K.N.2
-
57
-
-
36349004174
-
-
TINKER version 4.2. Available at:http://dasher.wustl.edu/tinker/.
-
TINKER Version 4.2
-
-
-
58
-
-
0029011701
-
A second generation force field for the simulation of proteins, nucleic acids, and organic molecules
-
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Jr, Ferguson DM, Spellmeyer DC, Fox T, Cladwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 1995;117:5179-5197.
-
(1995)
J Am Chem Soc
, vol.117
, pp. 5179-5197
-
-
Cornell, W.D.1
Cieplak, P.2
Bayly, C.I.3
Gould, I.R.4
Merz Jr., K.M.5
Ferguson, D.M.6
Spellmeyer, D.C.7
Fox, T.8
Cladwell, J.W.9
Kollman, P.A.10
-
59
-
-
0035798406
-
Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure
-
DOI 10.1006/jmbi.2001.5080
-
Gough J, Karplus K, Hughey R, Chothia C. Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. J Mol Biol. 2001; 313:903-919. (Pubitemid 33063435)
-
(2001)
Journal of Molecular Biology
, vol.313
, Issue.4
, pp. 903-919
-
-
Gough, J.1
Karplus, K.2
Hughey, R.3
Chothia, C.4
-
60
-
-
33846044585
-
The SUPERFAMILY database in 2007: Families and functions
-
Wilson D, Madera M, Vogel C, Chothia C, Gough J. The SUPERFAMILY database in 2007: families and functions. Nucleic Acids Res 2007;35:D308-D313.
-
(2007)
Nucleic Acids Res
, vol.35
-
-
Wilson, D.1
Madera, M.2
Vogel, C.3
Chothia, C.4
Gough, J.5
-
61
-
-
77951210095
-
-
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr. T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, and Pople JA, Gaussian, Inc, Wallingford CT, 2004.
-
(2004)
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery, J.A.7
Vreven Jr., T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.W.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
Gaussian, I.83
Wallingford, C.T.84
more..
-
62
-
-
0000189651
-
Density-functional thermochemistry. III. the role of exact exchange
-
Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 1993;98:5648-5652.
-
(1993)
J Chem Phys
, vol.98
, pp. 5648-5652
-
-
Becke, A.D.1
-
63
-
-
0345491105
-
Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
-
Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 1988;37:785-789.
-
(1988)
Phys Rev B
, vol.37
, pp. 785-789
-
-
Lee, C.1
Yang, W.2
Parr, R.G.3
-
64
-
-
84962361532
-
Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules
-
Takano Y, Houk KN. Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 2005;1:70-77.
-
(2005)
J Chem Theory Comput
, vol.1
, pp. 70-77
-
-
Takano, Y.1
Houk, K.N.2
-
65
-
-
84890021933
-
The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors
-
Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 1970;19:553-566.
-
(1970)
Mol Phys
, vol.19
, pp. 553-566
-
-
Boys, S.F.1
Bernardi, F.2
-
66
-
-
30244527819
-
How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers?
-
Simon S, Duran M, Dannenberg JJ. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys 1996; 105:11024-11031.
-
(1996)
J Chem Phys
, vol.105
, pp. 11024-11031
-
-
Simon, S.1
Duran, M.2
Dannenberg, J.J.3
-
68
-
-
46749129750
-
Role of tryptophan residues in gramicidin channel organization and function
-
Chattopadhyay A, Rawat SS, Greathouse DV, Kelkar DA, Koeppe RE, II. Role of tryptophan residues in gramicidin channel organization and function. Biophys J 2008;95:166-175.
-
(2008)
Biophys J
, vol.95
, pp. 166-175
-
-
Chattopadhyay, A.1
Rawat, S.S.2
Greathouse, D.V.3
Kelkar, D.A.4
Koeppe II, R.E.5
-
69
-
-
52049097563
-
The preference of tryptophan for membrane interfaces: Insights from N-methylation of tryptophans in gramicidin channels
-
Sun H, Greathouse DV, Andersen OS, Koeppe RE, II. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels. J Biol Chem 2008; 283:22233-22243.
-
(2008)
J Biol Chem
, vol.283
, pp. 22233-22243
-
-
Sun, H.1
Greathouse, D.V.2
Andersen, O.S.3
Koeppe II, R.E.4
-
70
-
-
57049130459
-
Effects of tryptophan microenvironment, soluble domain, and vesicle size on the thermodynamics of membrane protein folding: Lessons from transmembrane protein OmpA
-
Sanchez KM, Gable JE, Schlamadinger DE, Kim JE. Effects of tryptophan microenvironment, soluble domain, and vesicle size on the thermodynamics of membrane protein folding: lessons from transmembrane protein OmpA. Biochemistry 2008;47:12844-12852.
-
(2008)
Biochemistry
, vol.47
, pp. 12844-12852
-
-
Sanchez, K.M.1
Gable, J.E.2
Schlamadinger, D.E.3
Kim, J.E.4
-
72
-
-
34047249627
-
Structure of a Fbw7-Skp1-Cyclin e Complex: Multisite-Phosphorylated Substrate Recognition by SCF Ubiquitin Ligases
-
DOI 10.1016/j.molcel.2007.02.022, PII S1097276507001220
-
Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. Structure of a Pbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 2007;26:131-143. (Pubitemid 46550934)
-
(2007)
Molecular Cell
, vol.26
, Issue.1
, pp. 131-143
-
-
Hao, B.1
Oehlmann, S.2
Sowa, M.E.3
Harper, J.W.4
Pavletich, N.P.5
-
73
-
-
9644307952
-
Hydrogen bonding in complex of serine with histidine: Computational and spectroscopic study of model compounds
-
Vianello R, Kovačevié B, Ambrožič G, Mavri J, Maksić ZB. Hydrogen bonding in complex of serine with histidine: computational and spectroscopic study of model compounds. Chem Phys Lett 2004;400:117-121,
-
(2004)
Chem Phys Lett
, vol.400
, pp. 117-121
-
-
Vianello, R.1
Kovačevié, B.2
Ambrožič, G.3
Mavri, J.4
Maksić, Z.B.5
-
74
-
-
0035873095
-
Short, strong hydrogen bonds at the active site of human acetylcholinesterase: Proton NMR studies
-
DOI 10.1021/bi010243j
-
Massiah MA, Viragh C, Reddy PM, Kovach IM, Johnson J, Rosenberry TL, Mildvan AS. Short, strong hydrogen bonds at the active site of human acetylcholinesterase: proton NMR studies. Biochemistry 2001;40:5682-5690. (Pubitemid 32440872)
-
(2001)
Biochemistry
, vol.40
, Issue.19
, pp. 5682-5690
-
-
Massiah, M.A.1
Viragh, C.2
Reddy, P.M.3
Kovach, I.M.4
Johnson, J.5
Rosenberry, T.L.6
Mildvan, A.S.7
-
75
-
-
0037179609
-
Short, strong hydrogen bonds on enzymes: NMR and mechanistic studies
-
DOI 10.1016/S0022-2860(02)00212-0, PII S0022286002002120
-
Mildvan AS, Massiah MA, Harris TK, Marks GT, Harrison DHT, Viragh C, Reddy PM, Kovach IM. Short, strong hydrogen bonds on enzymes: NMR and mechanistic studies. J Mol Struct 2002;615: 163-175. (Pubitemid 34988323)
-
(2002)
Journal of Molecular Structure
, vol.615
, Issue.1-3
, pp. 163-175
-
-
Mildvan, A.S.1
Massiah, M.A.2
Harris, T.K.3
Marks, G.T.4
Harrison, D.H.T.5
Viragh, C.6
Reddy, P.M.7
Kovach, I.M.8
-
76
-
-
34548819311
-
Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions
-
Greenfield NJ. Using circular dichroism collected as a function of temperature to determine the thermodynamics of protein unfolding and binding interactions. Nat Protoc 2006;1:2527-2535.
-
(2006)
Nat Protoc
, vol.1
, pp. 2527-2535
-
-
Greenfield, N.J.1
|