-
2
-
-
79953660108
-
On some properties of the quaternionic functional calculus
-
Colombo F., Sabadini I.: On some properties of the quaternionic functional calculus. J. Geom. Anal. 19, 601-627 (2009).
-
(2009)
J. Geom. Anal.
, vol.19
, pp. 601-627
-
-
Colombo, F.1
Sabadini, I.2
-
3
-
-
33748136203
-
-
Boston: Birkhäuser
-
Colombo F., Sabadini I., Sommen F., Struppa D. C.: Analysis of Dirac Systems and Computational Algebra. Progress in Mathematical Physics, Vol. 39. Birkhäuser, Boston (2004).
-
(2004)
Analysis of Dirac Systems and Computational Algebra. Progress in Mathematical Physics, Vol. 39
-
-
Colombo, F.1
Sabadini, I.2
Sommen, F.3
Struppa, D.C.4
-
4
-
-
64549162314
-
A functional calculus in a non commutative setting
-
Colombo F., Gentili G., Sabadini I., Struppa D. C.: A functional calculus in a non commutative setting. Electron. Res. Announc. Math. Sci. 14, 60-68 (2007).
-
(2007)
Electron. Res. Announc. Math. Sci.
, vol.14
, pp. 60-68
-
-
Colombo, F.1
Gentili, G.2
Sabadini, I.3
Struppa, D.C.4
-
5
-
-
39849086627
-
A new functional calculus for noncommuting operators
-
Colombo F., Sabadini I., Struppa D. C.: A new functional calculus for noncommuting operators. J. Funct. Anal. 254, 2255-2274 (2008).
-
(2008)
J. Funct. Anal.
, vol.254
, pp. 2255-2274
-
-
Colombo, F.1
Sabadini, I.2
Struppa, D.C.3
-
7
-
-
77954376185
-
-
doi: 10. 1007/s11785-009-0015-3
-
Colombo, F., Gentili, G., Sabadini, I., Struppa, D. C.: Non commutative functional calculus: bounded operators Complex Anal. Oper. Theory (2009). doi: 10. 1007/s11785-009-0015-3.
-
(2009)
Non commutative functional calculus: Bounded operators Complex Anal. Oper. Theory
-
-
Colombo, F.1
Gentili, G.2
Sabadini, I.3
Struppa, D.C.4
-
8
-
-
33847603339
-
Die Funktionentheorie der Differentialgleichungen Δu = 0 und Δ Δu = 0 mit vier reellen Variablen
-
Fueter R.: Die Funktionentheorie der Differentialgleichungen Δu = 0 und Δ Δu = 0 mit vier reellen Variablen. Comment. Math. Helv. 7, 307-330 (1934).
-
(1934)
Comment. Math. Helv.
, vol.7
, pp. 307-330
-
-
Fueter, R.1
-
9
-
-
0002303416
-
Über eine Hartogs'schen Satz
-
Fueter, R.: Über eine Hartogs'schen Satz. Comment. Math. Helv. 12, 75-80 (1939/1940).
-
(1939)
Comment. Math. Helv.
, vol.12
, pp. 75-80
-
-
Fueter, R.1
-
10
-
-
59949087387
-
Zeros of regular functions and polynomials of a quaternionic variable
-
Gentili G., Stoppato C.: Zeros of regular functions and polynomials of a quaternionic variable. Michigan Math. J. 56, 655-667 (2008).
-
(2008)
Michigan Math. J.
, vol.56
, pp. 655-667
-
-
Gentili, G.1
Stoppato, C.2
-
11
-
-
77952728943
-
The open mapping theorem for quaternionic regular functions
-
E-print arXiv: 0802.3861v1 [math. CV], in press
-
Gentili, G., Stoppato, C.: The open mapping theorem for quaternionic regular functions, E-print arXiv: 0802. 3861v1 [math. CV], Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), in press.
-
Ann. Sc. Norm. Super. Pisa Cl. Sci.
, vol.5
-
-
Gentili, G.1
Stoppato, C.2
-
12
-
-
33748137777
-
A new approach to Cullen-regular functions of a quaternionic variable
-
Gentili G., Struppa D. C.: A new approach to Cullen-regular functions of a quaternionic variable. C. R. Acad. Sci. Paris 342, 741-744 (2006).
-
(2006)
C. R. Acad. Sci. Paris
, vol.342
, pp. 741-744
-
-
Gentili, G.1
Struppa, D.C.2
-
13
-
-
34548156026
-
A new theory of regular functions of a quaternionic variable
-
Gentili G., Struppa D. C.: A new theory of regular functions of a quaternionic variable. Adv. Math. 216, 279-301 (2007).
-
(2007)
Adv. Math.
, vol.216
, pp. 279-301
-
-
Gentili, G.1
Struppa, D.C.2
-
16
-
-
34548181323
-
On the structure of the set of zeros of quaternionic polynomials
-
Pogorui A., Shapiro M. V.: On the structure of the set of zeros of quaternionic polynomials. Complex Var. 49(6), 379-389 (2004).
-
(2004)
Complex Var.
, vol.49
, Issue.6
, pp. 379-389
-
-
Pogorui, A.1
Shapiro, M.V.2
-
17
-
-
0011469690
-
Zeros of quaternion polynomials
-
Serôdio R., Siu L.-S.: Zeros of quaternion polynomials. Appl. Math. Lett. 14, 237-239 (2001).
-
(2001)
Appl. Math. Lett.
, vol.14
, pp. 237-239
-
-
Serôdio, R.1
Siu, L.-S.2
|