메뉴 건너뛰기




Volumn 37, Issue 8, 2010, Pages 5872-5886

An improved multi-objective particle swarm optimizer for multi-objective problems

Author keywords

Cluster; Disturbance; Global best particle; Jump improved operation; Multi objective optimization; Particle swarm optimizer; Proportional distribution

Indexed keywords

BENCH-MARK PROBLEMS; LOCAL OPTIMA; MULTI OBJECTIVE; MULTI-OBJECTIVE PROBLEM; NONDOMINATED SOLUTIONS; PARTICLE SWARM OPTIMIZERS; PERFORMANCE METRICS; SEARCHING ABILITY;

EID: 77951208570     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2010.02.018     Document Type: Article
Times cited : (85)

References (46)
  • 8
    • 84947926042 scopus 로고
    • A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II
    • Marc Schoenauer et al, Eds, Proceedings of the parallel problem solving from nature VI conference, Springer
    • Deb, K., Agrawal, S., Pratab, A., & Meyarivan, T. (2000). A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In Marc Schoenauer et al. (Eds.), Proceedings of the parallel problem solving from nature VI conference, Lecture notes in computer science (Vol. 1917, pp. 849-858). Springer.
    • (1917) Lecture notes in computer science , pp. 849-858
    • Deb, K.1    Agrawal, S.2    Pratab, A.3    Meyarivan, T.4
  • 12
    • 3142781424 scopus 로고    scopus 로고
    • A multi-objective algorithm based upon particle swarm optimization and efficient data structure and turbulence
    • Fieldsend, J. E., & Singh, S. (2002). A multi-objective algorithm based upon particle swarm optimization and efficient data structure and turbulence. In Workshop on computational intelligence (pp. 34-44).
    • (2002) Workshop on computational intelligence , pp. 34-44
    • Fieldsend, J.E.1    Singh, S.2
  • 13
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: Formulation discussion and generalization
    • S. Forrest (Ed, Morgan Kauffman Publishers pp
    • Fonseca, C. M., & Fleming, P. J. (1993). Genetic algorithms for multiobjective optimization: formulation discussion and generalization. In S. Forrest (Ed.), Proceedings of the fifth international conference on genetic algorithms. Morgan Kauffman Publishers (pp. 416-423).
    • (1993) Proceedings of the fifth international conference on genetic algorithms , pp. 416-423
    • Fonseca, C.M.1    Fleming, P.J.2
  • 14
    • 59749105367 scopus 로고    scopus 로고
    • A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization
    • Goh C.K., and Tan K.C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization. IEEE Transactions on Evolutionary Computation 13 1 (2009) 103-127
    • (2009) IEEE Transactions on Evolutionary Computation , vol.13 , Issue.1 , pp. 103-127
    • Goh, C.K.1    Tan, K.C.2
  • 15
    • 84942134374 scopus 로고    scopus 로고
    • Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks
    • Gudise, V. G., & Venayagamoorthy, G. K. (2003). Comparison of particle swarm optimization and backpropagation as training algorithms for neural networks. In Proceedings of the IEEE swarm intelligence symposium (pp. 110-117).
    • (2003) Proceedings of the IEEE swarm intelligence symposium , pp. 110-117
    • Gudise, V.G.1    Venayagamoorthy, G.K.2
  • 17
    • 33744532121 scopus 로고    scopus 로고
    • Multiobjective control of power plants using particle swarm optimization techniques
    • Heo J.S., Lee K.Y., and Garduno-Ramirez R. Multiobjective control of power plants using particle swarm optimization techniques. IEEE Transactions on Energy Conversion 21 2 (2006) 552-561
    • (2006) IEEE Transactions on Energy Conversion , vol.21 , Issue.2 , pp. 552-561
    • Heo, J.S.1    Lee, K.Y.2    Garduno-Ramirez, R.3
  • 18
    • 42249093168 scopus 로고    scopus 로고
    • Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer
    • Hsieh S.T., Sun T.Y., Lin C.L., and Liu C.C. Effective learning rate adjustment of blind source separation based on an improved particle swarm optimizer. IEEE Transactions on Evolutionary Computation 12 2 (2008) 242-251
    • (2008) IEEE Transactions on Evolutionary Computation , vol.12 , Issue.2 , pp. 242-251
    • Hsieh, S.T.1    Sun, T.Y.2    Lin, C.L.3    Liu, C.C.4
  • 24
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the non-dominated front using the Pareto archived evolution strategy
    • Knowles J.D., and Corne D.W. Approximating the non-dominated front using the Pareto archived evolution strategy. Evolutionary Computation 8 2 (2000) 149-172
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.D.1    Corne, D.W.2
  • 27
    • 84942162725 scopus 로고    scopus 로고
    • Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO)
    • Mostaghim, S., & Teich, J. (2003). Strategies for finding good local guides in multi-objective particle swarm optimization (MOPSO). In Proceedings of the IEEE swarm intelligence symposium (pp. 26-33).
    • (2003) Proceedings of the IEEE swarm intelligence symposium , pp. 26-33
    • Mostaghim, S.1    Teich, J.2
  • 37
    • 0000852513 scopus 로고
    • Multiobjective optimization using non-dominated sorting in genetic algorithms
    • Srinivas N., and Deb K. Multiobjective optimization using non-dominated sorting in genetic algorithms. Evolutionary Computation 2 3 (1994) 221-248
    • (1994) Evolutionary Computation , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 38
    • 69949162099 scopus 로고    scopus 로고
    • Particle swarm optimizer for multi-objective problems based on proportional distribution and cross-over operation
    • man and cybernetics pp
    • Sun, T. Y., Wu, W. C., Tsai, S. J., Hsieh, S. T., Liu, C. C., & Chiu, S. Y. (2008). Particle swarm optimizer for multi-objective problems based on proportional distribution and cross-over operation. In Proceedings of the IEEE international conference on systems man and cybernetics (pp. 2658-2663).
    • (2008) Proceedings of the IEEE international conference on systems , pp. 2658-2663
    • Sun, T.Y.1    Wu, W.C.2    Tsai, S.J.3    Hsieh, S.T.4    Liu, C.C.5    Chiu, S.Y.6
  • 41
    • 0003808325 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithm research: A history and analysis. Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson AFB, OH
    • Tech. Rep. TR-98-03
    • Van Veldhuizen, D. A., & Lamont, G. B. (1998). Multiobjective evolutionary algorithm research: A history and analysis. Dept. Elec. Comput. Eng., Graduate School of Eng., Air Force Inst. Technol., Wright-Patterson AFB, OH, Tech. Rep. TR-98-03.
    • (1998)
    • Van Veldhuizen, D.A.1    Lamont, G.B.2
  • 44
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • Zitzler E., Deb K., and Thiele L. Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8 2 (2000) 173-195
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 46
    • 0033318858 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach
    • Zitzler E., and Thiele L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. Transactions on Evolutionary Computation 3 4 (1999) 257-271
    • (1999) Transactions on Evolutionary Computation , vol.3 , Issue.4 , pp. 257-271
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.