-
1
-
-
0002970101
-
Global existence for semilinear parabolic problems
-
Amann H. Global existence for semilinear parabolic problems. J. Reine Angew. Math. 1985, 360:47-83.
-
(1985)
J. Reine Angew. Math.
, vol.360
, pp. 47-83
-
-
Amann, H.1
-
2
-
-
0000179311
-
Non-unicité des solutions d'une équation d'évolution non-linéaire
-
Baras P. Non-unicité des solutions d'une équation d'évolution non-linéaire. Ann. Fac. Sci. Toulouse Math. 1983, 5:287-302.
-
(1983)
Ann. Fac. Sci. Toulouse Math.
, vol.5
, pp. 287-302
-
-
Baras, P.1
-
3
-
-
84951415984
-
Problèmes paraboliques semi-linéaires avec données mesures
-
Baras P., Pierre M. Problèmes paraboliques semi-linéaires avec données mesures. Appl. Anal. 1984, 18:111-149.
-
(1984)
Appl. Anal.
, vol.18
, pp. 111-149
-
-
Baras, P.1
Pierre, M.2
-
4
-
-
77951208711
-
-
Nonlinear Evolution Equations in Banach Spaces, preprint book
-
Ph. Bénilan, M.G. Crandall, A. Pazy, Nonlinear Evolution Equations in Banach Spaces, preprint book.
-
-
-
Bénilan, Ph.1
Crandall, M.G.2
Pazy, A.3
-
6
-
-
0141720092
-
Flow invariance for perturbed nonlinear evolution equations
-
Bothe D. Flow invariance for perturbed nonlinear evolution equations. Abstr. Appl. Anal. 1996, 1:417-433.
-
(1996)
Abstr. Appl. Anal.
, vol.1
, pp. 417-433
-
-
Bothe, D.1
-
7
-
-
66049113392
-
The instantaneous limit of a reaction-diffusion system
-
Marcel Dekker, G. Lumer, L. Weis (Eds.) Evolution Equations and Their Applications in Physical and Life Sciences
-
Bothe D. The instantaneous limit of a reaction-diffusion system. Lect. Notes Pure Appl. Math. 2000, vol. 215:215-224. Marcel Dekker. G. Lumer, L. Weis (Eds.).
-
(2000)
Lect. Notes Pure Appl. Math.
, vol.215
, pp. 215-224
-
-
Bothe, D.1
-
8
-
-
0041513382
-
Instantaneous limits of reversible chemical reactions in presence of macroscopic convection
-
Bothe D. Instantaneous limits of reversible chemical reactions in presence of macroscopic convection. J. Differential Equations 2003, 193:27-48.
-
(2003)
J. Differential Equations
, vol.193
, pp. 27-48
-
-
Bothe, D.1
-
9
-
-
0142087796
-
A reaction-diffusion system with fast reversible reaction
-
Bothe D., Hilhorst D. A reaction-diffusion system with fast reversible reaction. J. Math. Anal. Appl. 2003, 286:125-135.
-
(2003)
J. Math. Anal. Appl.
, vol.286
, pp. 125-135
-
-
Bothe, D.1
Hilhorst, D.2
-
10
-
-
77951206569
-
-
The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, in press
-
D. Bothe, M. Pierre, The instantaneous limit for reaction-diffusion systems with a fast irreversible reaction, Discrete Contin. Dyn. Syst. Ser. S, in press.
-
-
-
Bothe, D.1
Pierre M2
-
11
-
-
34547932449
-
About global existence for quadratic systems of reaction-diffusion
-
Desvillettes L., Fellner K., Pierre M., Vovelle J. About global existence for quadratic systems of reaction-diffusion. Adv. Nonlinear Stud. 2007, 7:491-511.
-
(2007)
Adv. Nonlinear Stud.
, vol.7
, pp. 491-511
-
-
Desvillettes, L.1
Fellner, K.2
Pierre, M.3
Vovelle, J.4
-
14
-
-
0031519867
-
Stability and Lyapunov functions for reaction-diffusion systems
-
Fitzgibbon W.B., Hollis S.L., Morgan J.J. Stability and Lyapunov functions for reaction-diffusion systems. SIAM J. Math. Anal. 1997, 28:595-610.
-
(1997)
SIAM J. Math. Anal.
, vol.28
, pp. 595-610
-
-
Fitzgibbon, W.B.1
Hollis, S.L.2
Morgan, J.J.3
-
15
-
-
0242488084
-
Method of invariant manifold for chemical kinetics
-
Gorban A.N., Karlin I.V. Method of invariant manifold for chemical kinetics. Chem. Eng. Sci. 2003, 58:4751-4768.
-
(2003)
Chem. Eng. Sci.
, vol.58
, pp. 4751-4768
-
-
Gorban, A.N.1
Karlin, I.V.2
-
16
-
-
77951204718
-
Regularity analysis for systems of reaction-diffusion equations
-
Goudon Th., Vasseur A. Regularity analysis for systems of reaction-diffusion equations. Ann. Sci. Ecole Norm. Sup. 2010, 43:117-141.
-
(2010)
Ann. Sci. Ecole Norm. Sup.
, vol.43
, pp. 117-141
-
-
Goudon, T.1
Vasseur, A.2
-
17
-
-
0001409903
-
Non-uniqueness for a semilinear initial value problem
-
Haraux A., Weissler F.B. Non-uniqueness for a semilinear initial value problem. Indiana Univ. Math. J. 1982, 31:167-189.
-
(1982)
Indiana Univ. Math. J.
, vol.31
, pp. 167-189
-
-
Haraux, A.1
Weissler, F.B.2
-
18
-
-
0003304963
-
Geometric Theory of Semilinear Parabolic Equations
-
Springer, Berlin
-
Henry D. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Math. 1981, vol. 840. Springer, Berlin.
-
(1981)
Lecture Notes in Math.
, vol.840
-
-
Henry, D.1
-
19
-
-
0001243397
-
Global existence and boundedness in reaction-diffusion systems
-
Hollis S.L., Martin R.H., Pierre M. Global existence and boundedness in reaction-diffusion systems. SIAM J. Math. Anal. 1987, 18:744-761.
-
(1987)
SIAM J. Math. Anal.
, vol.18
, pp. 744-761
-
-
Hollis, S.L.1
Martin, R.H.2
Pierre, M.3
-
20
-
-
77951203639
-
Reduction for Michaelis-Menten-Henri kinetics in the presence of diffusion
-
Kalachev L.V., Kaper H.G., Kaper T.J., Popović N., Zagaris A. Reduction for Michaelis-Menten-Henri kinetics in the presence of diffusion. Electron. J. Differ. Equ. Conf. 2007, 16:155-184.
-
(2007)
Electron. J. Differ. Equ. Conf.
, vol.16
, pp. 155-184
-
-
Kalachev, L.V.1
Kaper, H.G.2
Kaper, T.J.3
Popović, N.4
Zagaris, A.5
-
22
-
-
52449125765
-
Nonlinear reaction-diffusion systems
-
Academic Press, New York, W.F. Ames, C. Rogers (Eds.) Nonlinear Equations in the Applied Sciences
-
Martin R.H., Pierre M. Nonlinear reaction-diffusion systems. Math. Sci. Eng. 1991, vol. 185:363-398. Academic Press, New York. W.F. Ames, C. Rogers (Eds.).
-
(1991)
Math. Sci. Eng.
, vol.185
, pp. 363-398
-
-
Martin, R.H.1
Pierre, M.2
-
23
-
-
0000753609
-
Global existence for semilinear parabolic systems
-
Morgan J. Global existence for semilinear parabolic systems. SIAM J. Math. Anal. 1989, 20:1128-1144.
-
(1989)
SIAM J. Math. Anal.
, vol.20
, pp. 1128-1144
-
-
Morgan, J.1
-
24
-
-
77951207210
-
-
Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., in press
-
M. Pierre, Global existence in reaction-diffusion systems with control of mass: a survey, Milan J. Math., in press.
-
-
-
Pierre, M.1
-
25
-
-
0141461783
-
Weak solutions and supersolutions in L1 for reaction-diffusion systems
-
Pierre M. Weak solutions and supersolutions in L1 for reaction-diffusion systems. J. Evol. Equ. 2003, 3:153-168.
-
(2003)
J. Evol. Equ.
, vol.3
, pp. 153-168
-
-
Pierre, M.1
-
26
-
-
0031489813
-
Blow up in reaction-diffusion systems with dissipation of mass
-
Pierre M., Schmitt D. Blow up in reaction-diffusion systems with dissipation of mass. SIAM J. Math. Anal. 1997, 28:259-269.
-
(1997)
SIAM J. Math. Anal.
, vol.28
, pp. 259-269
-
-
Pierre, M.1
Schmitt, D.2
-
27
-
-
0033730117
-
Blowup in reaction-diffusion systems with dissipation of mass
-
(electronic)
-
Pierre M., Schmitt D. Blowup in reaction-diffusion systems with dissipation of mass. SIAM Rev. 2000, 42:93-106. (electronic).
-
(2000)
SIAM Rev.
, vol.42
, pp. 93-106
-
-
Pierre, M.1
Schmitt, D.2
-
28
-
-
0003250029
-
Global Solutions of Reaction-Diffusion Systems
-
Springer, Berlin
-
Rothe F. Global Solutions of Reaction-Diffusion Systems. Lecture Notes in Math. 1984, vol. 1072. Springer, Berlin.
-
(1984)
Lecture Notes in Math.
, vol.1072
-
-
Rothe, F.1
-
29
-
-
0024731820
-
The quasi-steady-state assumption: a case study in perturbation
-
Segel L.A., Slemrod M. The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 1989, 31:446-477.
-
(1989)
SIAM Rev.
, vol.31
, pp. 446-477
-
-
Segel, L.A.1
Slemrod, M.2
|