-
2
-
-
0000181435
-
Mathematical problems of nonlinear dynamics: A Tutorial
-
N
-
Shilnikov L. Mathematical problems of nonlinear dynamics: A Tutorial // Int. J. of Bifurcation and Chaos. 1997. Vol. 7, N 9. P. 1353.
-
(1997)
Int. J. of Bifurcation and Chaos
, vol.7
, Issue.9
, pp. 1353
-
-
Shilnikov, L.1
-
3
-
-
15044353311
-
Lectures on chaotic dynamical systems
-
American Mathematical Society, Providence, RI; International Press, Somerville, MA
-
Afraimovich V. and Hsu S.-B. Lectures on chaotic dynamical systems // AMS/IP Studies in Advanced Mathematics, Vol. 28, American Mathematical Society, Providence, RI; International Press, Somerville, MA, 2003.
-
(2003)
AMS/IP Studies in Advanced Mathematics
, vol.28
-
-
Afraimovich, V.1
Hsu, S.-B.2
-
5
-
-
0242277087
-
Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor
-
Hunt T.J. and MacKay R.S. Anosov parameter values for the triple linkage and a physical system with a uniformly chaotic attractor// Nonlinearity. 2003. Vol. 16. P. 499.
-
(2003)
Nonlinearity
, vol.16
, pp. 499
-
-
Hunt, T.J.1
MacKay, R.S.2
-
7
-
-
32044436253
-
Mosekilde The hyperbolic Plykin attractor can exist in neuron models
-
and N
-
Belykh V., Belykh I. and Mosekilde The hyperbolic Plykin attractor can exist in neuron models// Int. J. of Bifurcation and Chaos. 2005. Vol. 15, N 11. P. 3567.
-
(2005)
Int. J. of Bifurcation and Chaos
, vol.15
, Issue.11
, pp. 3567
-
-
Belykh, V.1
Belykh, I.2
-
8
-
-
28844490183
-
Example of a physical system with a hyperbolic attractor of the Smale-Williams type
-
Kuznetsov S.P. Example of a physical system with a hyperbolic attractor of the Smale-Williams type// Phys. Rev. Lett. 2005. Vol. 95. P. 44101.
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 44101
-
-
Kuznetsov, S.P.1
-
9
-
-
85126071410
-
-
version 3.0. May
-
LAPACK - Linear Algebra PACKage, version 3.0. May, 2000 (http://www.netlib.org/lapack).
-
(2000)
LAPACK - Linear Algebra PACKage
-
-
-
10
-
-
0018989294
-
Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part {I}: Theory. Part {II}: Numerical application
-
Benettin G., GalganiL., GiorgilliA., Strelcyn J.-M. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: A method for computing all of them. Part {I}: Theory. Part {II}: Numerical application// Meccanica. 1980. Vol. 15. P. 9.
-
(1980)
Meccanica
, vol.15
, pp. 9
-
-
Benettin, G.1
Galgani, L.2
Giorgilli, A.3
Strelcyn, J.-M.4
-
12
-
-
0001163022
-
Spacetime chaos in coupled map lattices
-
Bunimovich L.A., Sinai Ya.G. Spacetime chaos in coupled map lattices// Nonlinearity. 1988. Vol. 1. P. 491.
-
(1988)
Nonlinearity
, vol.1
, pp. 491
-
-
Bunimovich, L.A.1
Sinai, Ya.G.2
|