메뉴 건너뛰기




Volumn 42, Issue 2, 2010, Pages 119-139

Interactive multi-objective particle swarm optimization with heatmap-visualization-based user interface

Author keywords

Heatmap visualization; Interactive multi objective particle swarm optimization; Interactive optimization; Multi objective optimization

Indexed keywords

DECISION MAKERS; DOMAIN SPECIFIC; DOMAIN-SPECIFIC KNOWLEDGE; HUMAN DECISIONS; HUMAN FATIGUE; INTERACTIVE OPTIMIZATION; MULTI OBJECTIVE PARTICLE SWARM OPTIMIZATION; NON-INTERACTIVE; OPTIMIZATION PROCESS; PARETO-FRONT; SIDE EFFECT; STANDARD TESTS;

EID: 77951129563     PISSN: 0305215X     EISSN: 10290273     Source Type: Journal    
DOI: 10.1080/03052150903042632     Document Type: Article
Times cited : (23)

References (28)
  • 1
    • 41149153821 scopus 로고    scopus 로고
    • Interactive particle swarm: A Pareto-adaptive metaheuristic to multiobjective optimization
    • Agrawal, S., et al., 2008. Interactive particle swarm: a Pareto-adaptive metaheuristic to multiobjective optimization. IEEE Transactions on Systems, Man and Cybernetics - Part A, 38 (2), 258-277.
    • (2008) IEEE Transactions on Systems, Man and Cybernetics - Part A , vol.38 , Issue.2 , pp. 258-277
    • Agrawal, S.1
  • 3
    • 84901438927 scopus 로고    scopus 로고
    • MOPSO: A proposal for multiple objective particle swarm optimization
    • Honolulu, HI, 12-17 May 2002. Piscataway, NJ, IEEE Computer Society
    • Coello, C. and Lechuga, M., 2002. MOPSO: a proposal for multiple objective particle swarm optimization. In: Proceedings of the 2002 Congress on Evolutionary Computation (CEC'02), Honolulu, HI, 12-17 May 2002. Vol.2. Piscataway, NJ, IEEE Computer Society.
    • (2002) Proceedings of the 2002 Congress on Evolutionary Computation (CEC'02) , vol.2
    • Coello, C.1    Lechuga, M.2
  • 4
    • 0033185714 scopus 로고    scopus 로고
    • Multi-objective genetic algorithms: Problem difficulties and construction of test problems
    • Deb, K., 1999. Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evolutionary Computation, 7 (3), 205-230.
    • (1999) Evolutionary Computation , vol.7 , Issue.3 , pp. 205-230
    • Deb, K.1
  • 5
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb, K., et al., 2002. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6 (2), 182-197.
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1
  • 7
    • 3142781424 scopus 로고    scopus 로고
    • A multi-objective algorithm based upon particle swarm optimization
    • Birmingham, UK, 2-4 September 2002
    • Fieldsend, J. and Singh, S., 2002. A multi-objective algorithm based upon particle swarm optimization. In: Proceedings of the UK Workshop on Computational Intelligence, Birmingham, UK, 2-4 September 2002, 34-44.
    • (2002) Proceedings of the UK Workshop on Computational Intelligence , pp. 34-44
    • Fieldsend, J.1    Singh, S.2
  • 10
    • 38449094143 scopus 로고    scopus 로고
    • Hybrid particle guide selection methods in multi-objective particle swarm optimization
    • Amsterdam, The Netherlands, 4-6 December 2006.Washington, DC: IEEE Computer Society
    • Ireland, D., et al., 2006. Hybrid particle guide selection methods in multi-objective particle swarm optimization. In: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing (E-SCIENCE '06), Amsterdam, The Netherlands, 4-6 December 2006.Washington, DC: IEEE Computer Society, 116.
    • (2006) Proceedings of the Second IEEE International Conference on E-Science and Grid Computing (E-SCIENCE '06) , pp. 116
    • Ireland, D.1
  • 11
    • 15244358441 scopus 로고    scopus 로고
    • Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation
    • Seattle,WA, 26-30 June 2004. Berlin: Springer-Verlag
    • Kamalian, R., Takagi, H., and Agogino, A.M., 2004. Optimized design of MEMS by evolutionary multi-objective optimization with interactive evolutionary computation. In: Proceedings of the Genetic and Evolutionary Conference (GECCO-2004), Seattle,WA, 26-30 June 2004. Berlin: Springer-Verlag, 1030-1041.
    • (2004) Proceedings of the Genetic and Evolutionary Conference (GECCO-2004) , pp. 1030-1041
    • Kamalian, R.1    Takagi, H.2    Agogino, A.M.3
  • 12
    • 34250785014 scopus 로고    scopus 로고
    • Reducing human fatigue in interactive evolutionary computation through fuzzy systems and machine learning systems
    • Vancouver, 16-21 July 2006.Washington, DC: IEEE Computer Society
    • Kamalian, R., et al., 2006. Reducing human fatigue in interactive evolutionary computation through fuzzy systems and machine learning systems. In: Proceedings of the IEEE International Conference on Fuzzy Systems, Vancouver, 16-21 July 2006.Washington, DC: IEEE Computer Society.
    • (2006) Proceedings of the IEEE International Conference on Fuzzy Systems
    • Kamalian, R.1
  • 14
    • 0034199912 scopus 로고    scopus 로고
    • Approximating the nondominated front using the pareto archived evolution strategy
    • Knowles, J. and Corne, D., 2000. Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation, 8 (2), 149-172.
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 149-172
    • Knowles, J.1    Corne, D.2
  • 16
    • 0345385141 scopus 로고    scopus 로고
    • Technical report, Department of Computer Science and Software Engineering, Auburn University, Auburn, AL
    • Moore, J. and Chapman, R., 1999. Application of particle swarm to multiobjective optimization. Technical report, Department of Computer Science and Software Engineering, Auburn University, Auburn, AL.
    • (1999) Application of Particle Swarm to Multiobjective Optimization
    • Moore, J.1    Chapman, R.2
  • 17
    • 84942162725 scopus 로고    scopus 로고
    • Strategies for finding good local guides in multi-objective particle swarm optimization
    • 21-23 September 2003, Washington, DC: IEEE Computer Society
    • Mostaghim, S. and Teich, J., 2003. Strategies for finding good local guides in multi-objective particle swarm optimization. In: Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS'03), 21-23 September 2003, Washington, DC: IEEE Computer Society, 26-33.
    • (2003) Proceedings of the 2003 IEEE Swarm Intelligence Symposium (SIS'03) , pp. 26-33
    • Mostaghim, S.1    Teich, J.2
  • 23
    • 0000530063 scopus 로고    scopus 로고
    • Interactive evolutionary computation: Fusion of the capabilities of ECoptimization and human evaluation
    • Takagi, H., 2001. Interactive evolutionary computation: fusion of the capabilities ofECoptimization and human evaluation. In: Proceedings of the Institute of Electronic and Electrical Engineers, 89 (9), 1275-1296.
    • (2001) Proceedings of the Institute of Electronic and Electrical Engineers , vol.89 , Issue.9 , pp. 1275-1296
    • Takagi, H.1
  • 25
    • 0002754761 scopus 로고    scopus 로고
    • Directed multiple objective search of design spaces using genetic algorithms and neural networks
    • Orlando, FL, 13-17 July. San Francisco, CA: Morgan Kaufman
    • Todd, D.S. and Sen, P., 1999. Directed multiple objective search of design spaces using genetic algorithms and neural networks. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99),Vol. 2, Orlando, FL, 13-17 July. San Francisco, CA: Morgan Kaufman, 1738-1743.
    • (1999) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'99) , vol.2 , pp. 1738-1743
    • Todd, D.S.1    Sen, P.2
  • 28
    • 84878545782 scopus 로고    scopus 로고
    • Multiobjective optimization using evolutionary algorithms - A comparative case study
    • Lecture notes in computer science, London, UK: Springer-Verlag
    • Zitzler, E. and Thiele, L., 1998. Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Proceedings of the 5th International Conference on Parallel Problem Solving from Nature. Lecture notes in computer science Vol. 1498. London, UK: Springer-Verlag, 292-304.
    • (1998) Proceedings of the 5th International Conference on Parallel Problem Solving from Nature , vol.1498 , pp. 292-304
    • Zitzler, E.1    Thiele, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.