메뉴 건너뛰기




Volumn , Issue , 2009, Pages 277-285

Discovering frequent work procedures from resource connections

Author keywords

Automated assistance; Data mining; Intelligent interfaces; Provenance; Resource management; Workflow

Indexed keywords

AUTOMATED ASSISTANCE; INTELLIGENT INTERFACES; PROVENANCE; RESOURCE MANAGEMENT; WORKFLOW;

EID: 77951127625     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1502650.1502690     Document Type: Conference Paper
Times cited : (24)

References (33)
  • 2
    • 34648823337 scopus 로고    scopus 로고
    • Unsupervised and supervised machine learning in user modeling for intelligent learning environments
    • S. Amershi and C. Conati. Unsupervised and supervised machine learning in user modeling for intelligent learning environments. In IUI-07, pp 72-81.
    • IUI-07 , pp. 72-81
    • Amershi, S.1    Conati, C.2
  • 3
    • 0038375548 scopus 로고    scopus 로고
    • Taking email to task: The design and evaluation of a task management centered email tool
    • V. Bellotti, N. Ducheneaut, M. Howard, and I. Smith. Taking email to task: the design and evaluation of a task management centered email tool. In CHI-03, pp 345-352, 2003.
    • (2003) CHI-03 , pp. 345-352
    • Bellotti, V.1    Ducheneaut, N.2    Howard, M.3    Smith, I.4
  • 4
    • 34648843501 scopus 로고    scopus 로고
    • What do people recall about their documents?: Implications for desktop search tools
    • T. Blanc-Brude and D. L. Scapin. What do people recall about their documents?: implications for desktop search tools. In Proc. of IUI-07, pp 102-111, 2007.
    • (2007) Proc. of IUI-07 , pp. 102-111
    • Blanc-Brude, T.1    Scapin, D.L.2
  • 8
    • 33746043801 scopus 로고    scopus 로고
    • Automatically classifying emails into activities
    • M. Dredze, T. Lau, and N. Kushmerick. Automatically classifying emails into activities. In Proc. of IUI-06, pp 70-77, 2006.
    • (2006) Proc. of IUI-06 , pp. 70-77
    • Dredze, M.1    Lau, T.2    Kushmerick, N.3
  • 9
    • 0242456805 scopus 로고    scopus 로고
    • From run-time behavior to usage scenarios: An interaction-pattern mining approach
    • M. El-Ramly, E. Stroulia, and P. Sorenson. From run-time behavior to usage scenarios: an interaction-pattern mining approach. In Proc. of KDD-02, pp 315-324, 2002.
    • (2002) Proc. of KDD-02 , pp. 315-324
    • El-Ramly, M.1    Stroulia, E.2    Sorenson, P.3
  • 10
    • 38049139373 scopus 로고    scopus 로고
    • Workflow mining: Definitions, techniques, and future directions
    • C. A. Ellis, K.-H. Kim, and A. J. Rembert. Workflow mining: Definitions, techniques, and future directions. Workflow Handbook, pp 213-228, 2006.
    • (2006) Workflow Handbook , pp. 213-228
    • Ellis, C.A.1    Kim, K.-H.2    Rembert, A.J.3
  • 11
    • 49749123831 scopus 로고    scopus 로고
    • Mining interpretable human strategies: A case study
    • X. Z. Fern, C. Komireddy, and M. Burnett. Mining interpretable human strategies: A case study. In Proc. of ICDM-07, pp 475-480, 2007.
    • (2007) Proc. of ICDM-07 , pp. 475-480
    • Fern, X.Z.1    Komireddy, C.2    Burnett, M.3
  • 12
    • 41149178153 scopus 로고    scopus 로고
    • Automatic capture and reconstruction of computational provenance
    • J. Frew, D. Metzger, and P. Slaughter. Automatic capture and reconstruction of computational provenance. Concurr. Comput.: Pract. Exper., 20(5):485-496, 2008.
    • (2008) Concurr. Comput.: Pract. Exper , vol.20 , Issue.5 , pp. 485-496
    • Frew, J.1    Metzger, D.2    Slaughter, P.3
  • 13
    • 18744413919 scopus 로고    scopus 로고
    • Describing documents: What can users tell us?
    • D. Gonçalves and J. A. Jorge. Describing documents: what can users tell us? In IUI-04, pp 247-249, 2004.
    • (2004) IUI-04 , pp. 247-249
    • Gonçalves, D.1    Jorge, J.A.2
  • 15
    • 67649391719 scopus 로고    scopus 로고
    • Unsupervised activity discovery and characterization from event-streams
    • R. Hamid, S. Maddi, A. Johnson, A. Bobick, I. Essa, and C. Isbell. Unsupervised activity discovery and characterization from event-streams. In UAI-05, 2005.
    • (2005) UAI-05
    • Hamid, R.1    Maddi, S.2    Johnson, A.3    Bobick, A.4    Essa, I.5    Isbell, C.6
  • 16
    • 4544296752 scopus 로고    scopus 로고
    • A fast algorithm for mining frequent connected graphs
    • Technical Report RT0448, IBM Research
    • A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda. A fast algorithm for mining frequent connected graphs. Technical Report RT0448, IBM Research, 2002.
    • (2002)
    • Inokuchi, A.1    Washio, T.2    Nishimura, K.3    Motoda, H.4
  • 18
    • 33644608450 scopus 로고    scopus 로고
    • Automated email activity management: An unsupervised learning approach
    • N. Kushmerick and T. Lau. Automated email activity management: an unsupervised learning approach. In Proc. of IUI-05, pp 67-74, 2005.
    • (2005) Proc. of IUI-05 , pp. 67-74
    • Kushmerick, N.1    Lau, T.2
  • 20
    • 56349100780 scopus 로고    scopus 로고
    • Coscripter: Automating and sharing how-to knowledge in the enterprise
    • G. Leshed, E. Haber, T. Matthews, and T. Lau. Coscripter: Automating and sharing how-to knowledge in the enterprise. In CHI 2008, 2008.
    • (2008) CHI 2008
    • Leshed, G.1    Haber, E.2    Matthews, T.3    Lau, T.4
  • 22
    • 84861291441 scopus 로고    scopus 로고
    • No task left behind? examining the nature of fragmented work
    • G. Mark, V. M. Gonzalez, and J. Harris. No task left behind? examining the nature of fragmented work. In Proc. of CHI-05, pp 321-330, 2005.
    • (2005) Proc. of CHI-05 , pp. 321-330
    • Mark, G.1    Gonzalez, V.M.2    Harris, J.3
  • 24
    • 36348977475 scopus 로고    scopus 로고
    • Discovering multivariate motifs using subsequence density estimation and greedy mixture learning
    • D. Minnen, C. Isbell, I. Essa, and T. Starner. Discovering multivariate motifs using subsequence density estimation and greedy mixture learning. In Proc. of AAAI-07, pp 615-620, 2007.
    • (2007) Proc. of AAAI-07 , pp. 615-620
    • Minnen, D.1    Isbell, C.2    Essa, I.3    Starner, T.4
  • 25
    • 36348999991 scopus 로고    scopus 로고
    • Improving activity discovery with automatic neighborhood estimation
    • D. Minnen, T. Starner, I. Essa, and C. Isbell. Improving activity discovery with automatic neighborhood estimation. In Proc. of IJCAI-07, pp 6-12, 2007.
    • (2007) Proc. of IJCAI-07 , pp. 6-12
    • Minnen, D.1    Starner, T.2    Essa, I.3    Isbell, C.4
  • 26
    • 34648878629 scopus 로고    scopus 로고
    • Extracting knowledge about users' activities from raw workstation contents
    • T. M. Mitchell, S. H. Wang, Y. Huang, and A. Cheyer. Extracting knowledge about users' activities from raw workstation contents. In Proc.of AAAI-06, 2006.
    • (2006) Proc.of AAAI-06
    • Mitchell, T.M.1    Wang, S.H.2    Huang, Y.3    Cheyer, A.4
  • 29
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference. In Proc. of KDD-04, pp 647-652, 2004.
    • (2004) Proc. of KDD-04 , pp. 647-652
    • Nijssen, S.1    Kok, J.N.2
  • 31
    • 84880909181 scopus 로고    scopus 로고
    • Real-time detection of task switches of desktop users
    • J. Shen, L. Li, and T. G. Dietterich. Real-time detection of task switches of desktop users. In Proc. of IJCAI-07, pp 2868-2873, 2007.
    • (2007) Proc. of IJCAI-07 , pp. 2868-2873
    • Shen, J.1    Li, L.2    Dietterich, T.G.3
  • 32
    • 15544364892 scopus 로고    scopus 로고
    • Discovery of time-series motif from multi-dimensional data based on mdl principle
    • Y. Tanaka, K. Iwamoto, and K. Uehara. Discovery of time-series motif from multi-dimensional data based on mdl principle. Machine Learning, 58(2-3):269-300, 2005.
    • (2005) Machine Learning , vol.58 , Issue.2-3 , pp. 269-300
    • Tanaka, Y.1    Iwamoto, K.2    Uehara, K.3
  • 33
    • 77952334885 scopus 로고    scopus 로고
    • Closegraph: Mining closed frequent graph patterns
    • X. Yan and J. Han. Closegraph: mining closed frequent graph patterns. In KDD-03, pp 286-295, 2003.
    • (2003) KDD-03 , pp. 286-295
    • Yan, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.