메뉴 건너뛰기




Volumn 25, Issue 1, 2010, Pages 53-69

Automatic cluster identification for environmental applications using the self-organizing maps and a new genetic algorithm

Author keywords

Data mining; Environmental applications; Genetic algorithm; GIS; Self organizing maps; Spatial clustering

Indexed keywords

DATA INTERPRETATION; DATA MINING; DATA SET; GENETIC ALGORITHM; GIS; MAP; VISUALIZATION;

EID: 77951081879     PISSN: 10106049     EISSN: None     Source Type: Journal    
DOI: 10.1080/10106040802711687     Document Type: Article
Times cited : (3)

References (53)
  • 1
    • 33644906366 scopus 로고    scopus 로고
    • Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil
    • Amegashie, F., et al. 2006. Using complex permittivity and artificial neural networks to identify and classify copper, zinc, and lead contamination in soil. Canadian Geotechnical Journal, 43 (1), 100-109.
    • (2006) Canadian Geotechnical Journal , vol.43 , Issue.1 , pp. 100-109
    • Amegashie, F.1
  • 2
    • 85108017051 scopus 로고    scopus 로고
    • A feature-based approach to market segmentation via overlapping K-centroids clustering
    • Anil, C., et al. 1997. A feature-based approach to market segmentation via overlapping K-centroids clustering. Journal of Marketing Research, 34, 370-377.
    • (1997) Journal of Marketing Research , vol.34 , pp. 370-377
    • Anil, C.1
  • 3
    • 0028667333 scopus 로고
    • Clustering with evolution strategies
    • Babu, G.P. and Murty, M.N., 1994. Clustering with evolution strategies. Pattern Recognition, 27, 321-329.
    • (1994) Pattern Recognition , vol.27 , pp. 321-329
    • Babu, G.P.1    Murty, M.N.2
  • 7
    • 22444447333 scopus 로고    scopus 로고
    • A genetic approach to detecting clusters in point datasets
    • Conley, J., Gahegan, M., and Macgill, J., 2005. A genetic approach to detecting clusters in point datasets. Geographical Analysis, 37, 286-314.
    • (2005) Geographical Analysis , vol.37 , pp. 286-314
    • Conley, J.1    Gahegan, M.2    Macgill, J.3
  • 13
    • 0030432710 scopus 로고    scopus 로고
    • A comparison of three exploratory methods for cluster detection in spatial point patterns
    • Fotheringham, A.S. and Zhan, F.B., 1996. A comparison of three exploratory methods for cluster detection in spatial point patterns. Geographical Analysis, 28, 200-218.
    • (1996) Geographical Analysis , vol.28 , pp. 200-218
    • Fotheringham, A.S.1    Zhan, F.B.2
  • 14
    • 0034112572 scopus 로고    scopus 로고
    • On the application of inductive machine learning tools to geographic analysis
    • Gahegan, M., 2000. On the application of inductive machine learning tools to geographic analysis. Geographical Analysis, 32 (2), 113-139.
    • (2000) Geographical Analysis , vol.32 , Issue.2 , pp. 113-139
    • Gahegan, M.1
  • 15
    • 0037281210 scopus 로고    scopus 로고
    • Is inductive machine learning just another wild goose (or might it lay the golden egg)?
    • Gahegan, M., 2003. Is inductive machine learning just another wild goose (or might it lay the golden egg)? International Journal of Geographical Information Science, 17, 69-92.
    • (2003) International Journal of Geographical Information Science , vol.17 , pp. 69-92
    • Gahegan, M.1
  • 17
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • Seattle, WA. New York: ACM Press
    • Guha, S., Rastogi, R., and Shim, K., 1998. CURE: an efficient clustering algorithm for large databases. In: Proceedings of SIGMOD'98, Seattle, WA. New York: ACM Press.
    • (1998) Proceedings of SIGMOD'98
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 18
    • 46649083814 scopus 로고    scopus 로고
    • Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP)
    • Guo, D., 2008. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). International Journal of Geographical Information Science, 22 (7), 801-823.
    • (2008) International Journal of Geographical Information Science , vol.22 , Issue.7 , pp. 801-823
    • Guo, D.1
  • 19
    • 0026988817 scopus 로고
    • Genetic algorithms
    • Holland, J.H., 1992. Genetic algorithms. Scientific American, 267 (1), 66-72.
    • (1992) Scientific American , vol.267 , Issue.1 , pp. 66-72
    • Holland, J.H.1
  • 21
    • 0020068152 scopus 로고
    • Self-organized formation of topological correct feature maps
    • Kohonen, T., 1982. Self-organized formation of topological correct feature maps. Biological Cybernetics, 43, 59-96.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-96
    • Kohonen, T.1
  • 22
    • 0003410791 scopus 로고    scopus 로고
    • 3rd ed. Berlin, Heidelberg: Springer Press
    • Kohonen, T., 2001. Self-organizing maps. 3rd ed. Berlin, Heidelberg: Springer Press.
    • (2001) Self-organizing Maps
    • Kohonen, T.1
  • 24
    • 0017471365 scopus 로고
    • A triangulation method for the sequential mapping of points from N-space to two-space
    • Lee, R.C.T., Slagle, J.R., and Blum, H., 1977. A triangulation method for the sequential mapping of points from N-space to two-space. IEEE Transactions on Computers, 26 (3), 288-292.
    • (1977) IEEE Transactions on Computers , vol.26 , Issue.3 , pp. 288-292
    • Lee, R.C.T.1    Slagle, J.R.2    Blum, H.3
  • 27
    • 55349093546 scopus 로고    scopus 로고
    • A scale-space clustering method: Mitigating the effect of scale in the analysis of zone-based data
    • Mu, L. and Wang, F., 2008. A scale-space clustering method: mitigating the effect of scale in the analysis of zone-based data. Annals of the Association of American Geographers, 98 (1), 85-101.
    • (2008) Annals of the Association of American Geographers , vol.98 , Issue.1 , pp. 85-101
    • Mu, L.1    Wang, F.2
  • 28
    • 0742272019 scopus 로고    scopus 로고
    • Patterns of PCDDs and PCDFs in human milk and food and their characterization by artificial neural networks
    • Nadal, M., et al. 2004. Patterns of PCDDs and PCDFs in human milk and food and their characterization by artificial neural networks. Chemosphere, 54, 1375-1382.
    • (2004) Chemosphere , vol.54 , pp. 1375-1382
    • Nadal, M.1
  • 29
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • Santiago, Chile, San Francisco, CA: Morgan Kauffman
    • Ng, R.T. and Han, J., 1994. Efficient and effective clustering methods for spatial data mining. In: Proceedings of the 20th VLDB Conference, Santiago, Chile, San Francisco, CA: Morgan Kauffman, 144-155.
    • (1994) Proceedings of the 20th VLDB Conference , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 30
    • 0028562851 scopus 로고
    • Twoexploratory space-time attribute patternanalyzers relevant to GIS
    • In:S. Fotheringham and P. Rogerson, eds., London: Taylor and Francis
    • Openshaw, S., 1994.Twoexploratory space-time attribute patternanalyzers relevant to GIS. In:S. Fotheringham and P. Rogerson, eds. GIS and spatial analysis. London: Taylor and Francis, 83-104.
    • (1994) GIS and Spatial Analysis , pp. 83-104
    • Openshaw, S.1
  • 31
    • 0001785330 scopus 로고
    • Developing automated and smart spatial pattern exploration tools for geographical information systems applications
    • Openshaw, S., 1995. Developing automated and smart spatial pattern exploration tools for geographical information systems applications. The Statistician, 44, 3-16.
    • (1995) The Statistician , vol.44 , pp. 3-16
    • Openshaw, S.1
  • 32
    • 0002427202 scopus 로고    scopus 로고
    • Building automatic geographical analysis and exploration machines
    • In: P.A. Longley, S.M. Brooks, R. McDonnell, and B. Macmillan, eds., Chichester: Wiley
    • Openshaw, S., 1998. Building automatic geographical analysis and exploration machines. In: P.A. Longley, S.M. Brooks, R. McDonnell, and B. Macmillan, eds. Geocomputation: a primer. Chichester: Wiley, 95-115.
    • (1998) Geocomputation: A Primer , pp. 95-115
    • Openshaw, S.1
  • 36
    • 0348216720 scopus 로고    scopus 로고
    • User-centered intelligent spatial analysis of point data
    • In: D. Parker, ed., London: Taylor & Francis
    • Openshaw, S. and Perrée, T., 1996. User-centered intelligent spatial analysis of point data. In: D. Parker, ed. Innovations in GIS 3. London: Taylor & Francis, 119-134.
    • (1996) Innovations in GIS 3 , pp. 119-134
    • Openshaw, S.1    Perrée, T.2
  • 37
    • 84950876142 scopus 로고
    • A mark 1 geographical analysis machine for the automated analysis of point datasets
    • Openshaw, S., et al. 1987. A mark 1 geographical analysis machine for the automated analysis of point datasets. International Journal of Geographic Information Systems, 1, 335-358.
    • (1987) International Journal of Geographic Information Systems , vol.1 , pp. 335-358
    • Openshaw, S.1
  • 38
    • 77951026403 scopus 로고    scopus 로고
    • Introducing an improved fast and computationally-effcient SOM algorithm MIL-SOM: Issues and benefits for large-scale geospatial data
    • In:M. Raubal, H.Miller, A. Frank, and M. Goodchild, eds., Münster, Germany, September 20-23, 2006. pp
    • Oyana, T.J., 2006. Introducing an improved fast and computationally-efficient SOM algorithm MIL-SOM: issues and benefits for large-scale geospatial data. In:M. Raubal, H.Miller, A. Frank, and M. Goodchild, eds. Geographic information science. In Proceedings of the fourth International conference, GIScience 2006, Münster, Germany, September 20-23, 2006. pp.
    • (2006) Geographic Information Science. in Proceedings of the Fourth International Conference, Giscience 2006 , pp. 141-145
    • Oyana, T.J.1
  • 40
    • 77951073125 scopus 로고    scopus 로고
    • Identification of spatial patterns and neighborhood characterization of elevated levels of child lead poisoning in the city of Chicago, 1997-2003
    • In: J.W. Frazier and L. Estaville, eds., 1-4 November 2006. Texas State University. Binghamton, NY: Global Academic Publishing
    • Oyana, T.J. and Margai, F.M., 2006. Identification of spatial patterns and neighborhood characterization of elevated levels of child lead poisoning in the city of Chicago, 1997-2003. In: J.W. Frazier and L. Estaville, eds. Race, ethnicity & place conference, 1-4 November 2006. Texas State University. Binghamton, NY: Global Academic Publishing.
    • (2006) Race, Ethnicity & Place Conference
    • Oyana, T.J.1    Margai, F.M.2
  • 41
    • 41649115921 scopus 로고    scopus 로고
    • Geographic analysis of health risks of pediatric lead exposure: A golden opportunity to promote healthy neighborhoods
    • Oyana, T.J. and Margai, F.M., 2007. Geographic analysis of health risks of pediatric lead exposure: a golden opportunity to promote healthy neighborhoods. Archives of Environmental and Occupational Health, 62 (2), 93-104.
    • (2007) Archives of Environmental and Occupational Health , vol.62 , Issue.2 , pp. 93-104
    • Oyana, T.J.1    Margai, F.M.2
  • 42
    • 0018262845 scopus 로고
    • Improving the efficiency of Sammon's nonlinear mapping by using clustering archetypes
    • Pykett, C.E., 1978. Improving the efficiency of Sammon's nonlinear mapping by using clustering archetypes. Electronics Letters, 14, 799-800.
    • (1978) Electronics Letters , vol.14 , pp. 799-800
    • Pykett, C.E.1
  • 43
  • 44
    • 15544383102 scopus 로고    scopus 로고
    • Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks
    • Shang, J.Q., et al. 2004. Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks. Canadian Geotechnical Journal, 41 (6), 1054-1067.
    • (2004) Canadian Geotechnical Journal , vol.41 , Issue.6 , pp. 1054-1067
    • Shang, J.Q.1
  • 45
    • 2542587466 scopus 로고    scopus 로고
    • Relationship-based clustering and visualization for high-dimensional data mining
    • Strehl, A. and Ghosh, J., 2003. Relationship-based clustering and visualization for high-dimensional data mining. INFORMS Journal on Computing, 15, 208-230.
    • (2003) INFORMS Journal on Computing , vol.15 , pp. 208-230
    • Strehl, A.1    Ghosh, J.2
  • 46
    • 77951032894 scopus 로고    scopus 로고
    • The MathWorks Inc, Natick, MA
    • The MathWorks Inc, 2005. MatLab®17.1. Natick, MA.
    • (2005) MatLab®17.1
  • 48
    • 32744472805 scopus 로고    scopus 로고
    • Testing space-time and more complex hyperspace geographical analysis tools
    • In: P. Atkinson and D. Martin, eds., London: Taylor& Francis
    • Turton, I., et al. 2000. Testing space-time and more complex hyperspace geographical analysis tools. In: P. Atkinson and D. Martin, eds. Innovations in GIS 7. London: Taylor& Francis, 87-100.
    • (2000) Innovations in GIS 7 , pp. 87-100
    • Turton, I.1
  • 49
    • 0033715579 scopus 로고    scopus 로고
    • Genetic algorithm-based clustering technique
    • Ujjwal, M. and Sanghamitra, B., 2000. Genetic algorithm-based clustering technique. Pattern Recognition, 33 (9), 1455-1465.
    • (2000) Pattern Recognition , vol.33 , Issue.9 , pp. 1455-1465
    • Ujjwal, M.1    Sanghamitra, B.2
  • 50
    • 0002432308 scopus 로고
    • Kohonen's self organizing feature maps for exploratory data analysis
    • Dordrecht, Netherlands. Paris: Kluwer Academic Press
    • Ultsch, A. and Siemon, H.P., 1990. Kohonen's self organizing feature maps for exploratory data analysis. In: Proceedings of International neural network conference (INNC'90), Dordrecht, Netherlands. Paris: Kluwer Academic Press, 305-308.
    • (1990) Proceedings of International Neural Network Conference (INNC'90) , pp. 305-308
    • Ultsch, A.1    Siemon, H.P.2
  • 51
    • 0003410789 scopus 로고    scopus 로고
    • Thesis for the degree of Master of Science in Engineering. Helsinki University of Technology
    • Vesanto, J., 1997. Data mining techniques based on the self-organizing map. Thesis for the degree of Master of Science in Engineering. Helsinki University of Technology.
    • (1997) Data Mining Techniques Based on the Self-organizing Map
    • Vesanto, J.1
  • 52
    • 0006519201 scopus 로고    scopus 로고
    • SOM toolbox team Helsinki University of Technology ISBN 951-22-4951-0
    • Vesanto, J., et al. 2000. SOM toolbox for Matlab 5. SOM toolbox team Helsinki University of Technology ISBN 951-22-4951-0.
    • (2000) Som Toolbox for Matlab 5
    • Vesanto, J.1
  • 53
    • 0030157145 scopus 로고    scopus 로고
    • BIRCH: An efficient data clustering method for very large databases
    • Montreal, Canada. New York: ACM Press
    • Zhang, T., Ramakrishnan, R., and Livny, M., 1996. BIRCH: an efficient data clustering method for very large databases. In: Proceedings of SIGMOD'96, Montreal, Canada. New York: ACM Press, 103-114.
    • (1996) Proceedings of SIGMOD'96 , pp. 103-114
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.