-
2
-
-
31844446958
-
Learning to rank using gradient descent
-
C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton, and G. Hulldender. Learning to rank using gradient descent. In Proc. Intl. Conf. Machine Learning, 2005.
-
Proc. Intl. Conf. Machine Learning, 2005
-
-
Burges, C.1
Shaked, T.2
Renshaw, E.3
Lazier, A.4
Deeds, M.5
Hamilton, N.6
Hulldender, G.7
-
3
-
-
34547987951
-
Learning to rank: From pairwise approach to listwise approach
-
New York, NY, USA, ACM
-
Z. Cao, T. Qin, T.-Y. Liu, M.-F. Tsai, and H. Li. Learning to rank: from pairwise approach to listwise approach. In ICML '07: Proceedings of the 24th international conference on Machine learning, pages 129-136, New York, NY, USA, 2007. ACM.
-
(2007)
ICML '07: Proceedings of the 24th International Conference on Machine Learning
, pp. 129-136
-
-
Cao, Z.1
Qin, T.2
Liu, T.-Y.3
Tsai, M.-F.4
Li, H.5
-
4
-
-
55349114379
-
Statistical analysis of bayes optimal subset ranking
-
D. Cossock and T. Zhang. Statistical analysis of bayes optimal subset ranking. IEEE Transactions on Information Theory, 54(11):5140-5154, 2008.
-
(2008)
IEEE Transactions on Information Theory
, vol.54
, Issue.11
, pp. 5140-5154
-
-
Cossock, D.1
Zhang, T.2
-
6
-
-
4644367942
-
An efficient boosting algorithm for combining preferences
-
Y. Freund, R. Iyer, R. Schapire, and Y. Singer. An efficient boosting algorithm for combining preferences. Journal of Machine Learning Research, 4:933-969, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 933-969
-
-
Freund, Y.1
Iyer, R.2
Schapire, R.3
Singer, Y.4
-
8
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
J. Friedman, T. Hastie, and R. Tibshirani. Additive logistic regression: A statistical view of boosting. The Annals of Statistics, 28(2):337-374, 2000.
-
(2000)
The Annals of Statistics
, vol.28
, Issue.2
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
9
-
-
0008371352
-
Large margin rank boundaries for ordinal regression
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for ordinal regression. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 115-132, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 115-132
-
-
Herbrich, R.1
Graepel, T.2
Obermayer, K.3
-
11
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
D. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45(3):503-528, 1989.
-
(1989)
Mathematical Programming
, vol.45
, Issue.3
, pp. 503-528
-
-
Liu, D.1
Nocedal, J.2
-
13
-
-
67650689705
-
Letor: Benchmark dataset for research on learning to rank for information retrieval
-
T.-Y. Liu, J. Xu, T. Qin, W. Xiong, and H. Li. Letor: Benchmark dataset for research on learning to rank for information retrieval. In LR4IR 2007, in conjunction with SIGIR 2007, 2007.
-
(2007)
LR4IR 2007, in Conjunction with SIGIR 2007
-
-
Liu, T.-Y.1
Xu, J.2
Qin, T.3
Xiong, W.4
Li, H.5
-
14
-
-
0002550596
-
Functional gradient techniques for combining hypotheses
-
A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Cambridge, MA, MIT Press
-
L. Mason, J. Baxter, P. L. Bartlett, and M. Frean. Functional gradient techniques for combining hypotheses. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 221-246, Cambridge, MA, 2000. MIT Press.
-
(2000)
Advances in Large Margin Classifiers
, pp. 221-246
-
-
Mason, L.1
Baxter, J.2
Bartlett, P.L.3
Frean, M.4
-
15
-
-
85162015906
-
Bundle methods for machine learning
-
D. Koller and Y. Singer, editors, Cambridge MA, MIT Press
-
A. Smola, S. V. N. Vishwanathan, and Q. Le. Bundle methods for machine learning. In D. Koller and Y. Singer, editors, Advances in Neural Information Processing Systems 20, Cambridge MA, 2007. MIT Press.
-
(2007)
Advances in Neural Information Processing Systems
, vol.20
-
-
Smola, A.1
Vishwanathan, S.V.N.2
Le, Q.3
-
17
-
-
36448961557
-
FRank: A ranking method with fideltiy loss
-
M.-F. Tsai, T.-Y. Liu, T. Qin, H.-H. Chen, and W.-Y. Ma. FRank: A ranking method with fideltiy loss. In Proceedings of International ACM SIGIR Conference on Research and development in information retrieval, 2007.
-
Proceedings of International ACM SIGIR Conference on Research and Development in Information Retrieval, 2007
-
-
Tsai, M.-F.1
Liu, T.-Y.2
Qin, T.3
Chen, H.-H.4
Ma, W.-Y.5
-
19
-
-
0000864140
-
The necessary and sufficient conditions for consistency in the empirical risk minimization method
-
V. Vapnik and A. Chervonenkis. The necessary and sufficient conditions for consistency in the empirical risk minimization method. Pattern Recognition and Image Analysis, 1(3):283-305, 1991.
-
(1991)
Pattern Recognition and Image Analysis
, vol.1
, Issue.3
, pp. 283-305
-
-
Vapnik, V.1
Chervonenkis, A.2
-
20
-
-
85162026715
-
Cofi rank - Maximum margin matrix factorization for collaborative ranking
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
M. Weimer, A. Karatzoglou, Q. Le, and A. Smola. Cofi rank - maximum margin matrix factorization for collaborative ranking. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
-
-
Weimer, M.1
Karatzoglou, A.2
Le, Q.3
Smola, A.4
-
22
-
-
56449094442
-
Listwise approach to learning to rank - Theory and algorithm
-
F. Xia, T. Y. Liu, J. Wang, W. Zhang, and H. Li. Listwise approach to learning to rank - Theory and algorithm. In International Conference on Machine Learning (ICML), 2008.
-
International Conference on Machine Learning (ICML), 2008
-
-
Xia, F.1
Liu, T.Y.2
Wang, J.3
Zhang, W.4
Li, H.5
-
25
-
-
64749103872
-
Query-level learning to rank using isotonic regression
-
Z. Zheng, H. Zha, and G. Sun. Query-level learning to rank using isotonic regression. In Proccedings of the 46th Annual Allerton Conference on Communication, Control and Computing. Allerton, IL, 2008.
-
Proccedings of the 46th Annual Allerton Conference on Communication, Control and Computing. Allerton, IL, 2008
-
-
Zheng, Z.1
Zha, H.2
Sun, G.3
-
26
-
-
85161963897
-
A general boosting method and its application to learning ranking functions for web search
-
J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, MIT Press, Cambridge, MA
-
Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and G. Sun. A general boosting method and its application to learning ranking functions for web search. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages 1697-1704. MIT Press, Cambridge, MA, 2008.
-
(2008)
Advances in Neural Information Processing Systems
, vol.20
, pp. 1697-1704
-
-
Zheng, Z.1
Zha, H.2
Zhang, T.3
Chapelle, O.4
Chen, K.5
Sun, G.6
|