-
1
-
-
0004086863
-
-
American Society of Metals, Metals Park, OH
-
Altan T., Oh S., and Gegel H. Metal Forming Fundamentals and Applications (1979), American Society of Metals, Metals Park, OH
-
(1979)
Metal Forming Fundamentals and Applications
-
-
Altan, T.1
Oh, S.2
Gegel, H.3
-
4
-
-
84984085449
-
Boundary-layer behavior on continuous solid surface: I. Boundary layer equations for two-dimensional and axi-symmetric flow
-
Sakiadis B.C. Boundary-layer behavior on continuous solid surface: I. Boundary layer equations for two-dimensional and axi-symmetric flow. AIChE J. 7 (1961) 26-28
-
(1961)
AIChE J.
, vol.7
, pp. 26-28
-
-
Sakiadis, B.C.1
-
5
-
-
84984087948
-
Boundary-layer behavior on continuous solid surface: II. Boundary layer on continuous flat surface
-
Sakiadis B.C. Boundary-layer behavior on continuous solid surface: II. Boundary layer on continuous flat surface. AIChE J. 7 (1961) 221-225
-
(1961)
AIChE J.
, vol.7
, pp. 221-225
-
-
Sakiadis, B.C.1
-
6
-
-
0000201004
-
Exact solutions of the steady state Navier-Stokes equations
-
Wang C.Y. Exact solutions of the steady state Navier-Stokes equations. Annu. Rev. Fluid Mech. 23 (1991) 159
-
(1991)
Annu. Rev. Fluid Mech.
, vol.23
, pp. 159
-
-
Wang, C.Y.1
-
7
-
-
33646099212
-
Flow past a stretching plate
-
Crane L.J. Flow past a stretching plate. Z. Angew. Math. Phys. (ZAMP) 21 (1970) 645-647
-
(1970)
Z. Angew. Math. Phys. (ZAMP)
, vol.21
, pp. 645-647
-
-
Crane, L.J.1
-
8
-
-
0019360479
-
On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not vanishingly small
-
Kuiken H.K. On boundary layers in fluid mechanics that decay algebraically along stretches of wall that are not vanishingly small. IMA J. Appl. Math. 27 (1981) 387-405
-
(1981)
IMA J. Appl. Math.
, vol.27
, pp. 387-405
-
-
Kuiken, H.K.1
-
9
-
-
0020881905
-
Similarity solutions of the boundary-layer equations for a stretching wall
-
Banks W.H.H. Similarity solutions of the boundary-layer equations for a stretching wall. J. Mech. Theor. Appl. 2 (1983) 375-392
-
(1983)
J. Mech. Theor. Appl.
, vol.2
, pp. 375-392
-
-
Banks, W.H.H.1
-
10
-
-
84984317575
-
Heat and mass transfer on a stretching sheet with suction or blowing
-
Gupta P.S., and Gupta A.S. Heat and mass transfer on a stretching sheet with suction or blowing. Can. J. Chem. Eng. 55 (1977) 744-746
-
(1977)
Can. J. Chem. Eng.
, vol.55
, pp. 744-746
-
-
Gupta, P.S.1
Gupta, A.S.2
-
11
-
-
0001076699
-
Stretching a surface in a rotating fluid
-
Wang C.Y. Stretching a surface in a rotating fluid. J. Appl. Math. Phys. (ZAMP) 39 (1988) 177-185
-
(1988)
J. Appl. Math. Phys. (ZAMP)
, vol.39
, pp. 177-185
-
-
Wang, C.Y.1
-
12
-
-
0021480113
-
The three-dimensional flow due to a stretching flat surface
-
Wang C.Y. The three-dimensional flow due to a stretching flat surface. Phys. Fluids 27 (1984) 1915-1917
-
(1984)
Phys. Fluids
, vol.27
, pp. 1915-1917
-
-
Wang, C.Y.1
-
13
-
-
38049083740
-
Flow over a stretchable disk
-
Fang T. Flow over a stretchable disk. Phys. Fluids 19 (2007) 128105
-
(2007)
Phys. Fluids
, vol.19
, pp. 128105
-
-
Fang, T.1
-
14
-
-
17744408669
-
Steady flow in a channel or tube with an accelerating surface velocity: an exact solution to the Navier-Stokes equations with reverse flow
-
Brady J.F., and Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity: an exact solution to the Navier-Stokes equations with reverse flow. J. Fluid Mech. 112 (1981) 127-150
-
(1981)
J. Fluid Mech.
, vol.112
, pp. 127-150
-
-
Brady, J.F.1
Acrivos, A.2
-
15
-
-
0010001845
-
Fluid flow due to a stretching cylinder
-
Wang C.Y. Fluid flow due to a stretching cylinder. Phys. Fluids 31 (1988) 466-468
-
(1988)
Phys. Fluids
, vol.31
, pp. 466-468
-
-
Wang, C.Y.1
-
16
-
-
0021422184
-
The spatial stability of a class of similarity solutions
-
Durlofskyl L., and Brady J.F. The spatial stability of a class of similarity solutions. Phys. Fluids 27 5 (1984) 1068-1076
-
(1984)
Phys. Fluids
, vol.27
, Issue.5
, pp. 1068-1076
-
-
Durlofskyl, L.1
Brady, J.F.2
-
17
-
-
0025400894
-
On transition to chaos in two-dimensional channel flow symmetrically driven by accelerating walls
-
Watson E.B.B., Banks W.H.H., Zaturska M.B., and Drazin P.G. On transition to chaos in two-dimensional channel flow symmetrically driven by accelerating walls. J. Fluid Mech. 212 (1990) 451
-
(1990)
J. Fluid Mech.
, vol.212
, pp. 451
-
-
Watson, E.B.B.1
Banks, W.H.H.2
Zaturska, M.B.3
Drazin, P.G.4
-
19
-
-
0029227406
-
Flow in a pipe driven by suction and accelerating wall
-
Zaturska M.B., and Banks W.H.H. Flow in a pipe driven by suction and accelerating wall. Acta Mech. 110 1-4 (1995) 111-121
-
(1995)
Acta Mech.
, vol.110
, Issue.1-4
, pp. 111-121
-
-
Zaturska, M.B.1
Banks, W.H.H.2
-
20
-
-
0037494887
-
New solutions for flow in a channel with porous walls and/or non-rigid walls
-
Zaturska M.B., and Banks W.H.H. New solutions for flow in a channel with porous walls and/or non-rigid walls. Fluid Dyn. Res. 33 1-2 (2003) 57-71
-
(2003)
Fluid Dyn. Res.
, vol.33
, Issue.1-2
, pp. 57-71
-
-
Zaturska, M.B.1
Banks, W.H.H.2
-
21
-
-
33745119160
-
Steady viscous flow between two porous disks
-
Rasmusse H. Steady viscous flow between two porous disks. J. Appl. Math. Phys. (ZAMP) 21 2 (1970) 187-195
-
(1970)
J. Appl. Math. Phys. (ZAMP)
, vol.21
, Issue.2
, pp. 187-195
-
-
Rasmusse, H.1
-
22
-
-
56349127272
-
Flow between two stretchable disks - An exact solution of the Navier-Stokes equations
-
Fang T., and Zhang J. Flow between two stretchable disks - An exact solution of the Navier-Stokes equations. Int. Commun. Heat Mass Transfer 35 (2008) 892-895
-
(2008)
Int. Commun. Heat Mass Transfer
, vol.35
, pp. 892-895
-
-
Fang, T.1
Zhang, J.2
-
25
-
-
0141961626
-
On the Homotopy Analysis Method for nonlinear problems
-
Liao S.J. On the Homotopy Analysis Method for nonlinear problems. Appl. Math. Comput. 147 (2004) 499-513
-
(2004)
Appl. Math. Comput.
, vol.147
, pp. 499-513
-
-
Liao, S.J.1
-
26
-
-
67349169966
-
On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: a general approach
-
Van Gorder R.A., and Vajravelu K. On the selection of auxiliary functions, operators, and convergence control parameters in the application of the Homotopy Analysis Method to nonlinear differential equations: a general approach. Commun. Nonlinear Sci. Numer. Simul. 14 (2009) 4078-4089
-
(2009)
Commun. Nonlinear Sci. Numer. Simul.
, vol.14
, pp. 4078-4089
-
-
Van Gorder, R.A.1
Vajravelu, K.2
|