메뉴 건너뛰기




Volumn 33, Issue 2, 2010, Pages 163-175

A quasi-boundary semi-analytical method for backward heat conduction problems

Author keywords

Backward heat conduction problem; Fourier series; Fredholm integral equation; Ill posed problem; Regularized solution; Two point boundary value problem

Indexed keywords

BOUNDARY VALUE PROBLEMS; FOURIER SERIES; INTEGRAL EQUATIONS;

EID: 77950798676     PISSN: 02533839     EISSN: 21587299     Source Type: Journal    
DOI: 10.1080/02533839.2010.9671608     Document Type: Article
Times cited : (13)

References (34)
  • 2
    • 0031260782 scopus 로고    scopus 로고
    • Continuous Dependence on Modeling for Related Cauchy Problems of a Class of Evolution Equations
    • Ames, K. A., and Cobb, S. S., 1997. “Continuous Dependence on Modeling for Related Cauchy Problems of a Class of Evolution Equations”. Journal of Mathematical Analysis and Applications, 215 (1):15–31.
    • (1997) Journal of Mathematical Analysis and Applications , vol.215 , Issue.1 , pp. 15-31
    • Ames, K.A.1    Cobb, S.S.2
  • 4
    • 1942417404 scopus 로고    scopus 로고
    • Continuous Dependence on Modeling for Some Well-Posed Perturbations of the Backward Heat Equation
    • Ames, K. A., and Payne, L. E., 1999. “Continuous Dependence on Modeling for Some Well-Posed Perturbations of the Backward Heat Equation”. Journal of Inequalities and Applications, 3 (1):51–64.
    • (1999) Journal of Inequalities and Applications , vol.3 , Issue.1 , pp. 51-64
    • Ames, K.A.1    Payne, L.E.2
  • 5
    • 0004147916 scopus 로고
    • 2nd ed., Reading, MA, USA: Addison-Wesley
    • Apostol, T. M., 1974. Mathematical Analysis, 2nd ed., Reading, MA, USA:Addison-Wesley.
    • (1974) Mathematical Analysis
    • Apostol, T.M.1
  • 6
    • 0034918670 scopus 로고    scopus 로고
    • Pollution Source Identification in Heterogeneous Porous Media
    • Atmadja, J., and Bagtzoglou, A. C., 2001. “Pollution Source Identification in Heterogeneous Porous Media”. Water Resources Research, 37 (8):2113–2125.
    • (2001) Water Resources Research , vol.37 , Issue.8 , pp. 2113-2125
    • Atmadja, J.1    Bagtzoglou, A.C.2
  • 7
    • 33751514577 scopus 로고    scopus 로고
    • Optimal Regularization Method for Ill-Posed Cauchy Problems
    • Boussetila, N., and Rebbani, F., 2006. “Optimal Regularization Method for Ill-Posed Cauchy Problems”. Electronic Journal of Differential Equations, 2006 (147):1–15.
    • (2006) Electronic Journal of Differential Equations , vol.2006 , Issue.147 , pp. 1-15
    • Boussetila, N.1    Rebbani, F.2
  • 9
    • 33847712471 scopus 로고    scopus 로고
    • A New Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems
    • Chang, J.-R., Liu, C.-S., and Chang, C.-W., 2007. “A New Shooting Method for Quasi-Boundary Regularization of Backward Heat Conduction Problems”. International Journal of Heat and Mass Transfer, 50 (11–12):2325–2332.
    • (2007) International Journal of Heat and Mass Transfer , vol.50 , Issue.11-12 , pp. 2325-2332
    • Chang, J.-R.1    Liu, C.-S.2    Chang, C.-W.3
  • 10
    • 0242468019 scopus 로고    scopus 로고
    • Different Approaches for the Solution of a Backward Heat Conduction Problem
    • Chiwiacowsky, L. D., and de Campos Velho, H. F., 2003. “Different Approaches for the Solution of a Backward Heat Conduction Problem”. Inverse Problem in Science and Engineering, 11 (6):471–494.
    • (2003) Inverse Problem in Science and Engineering , vol.11 , Issue.6 , pp. 471-494
    • Chiwiacowsky, L.D.1    de Campos Velho, H.F.2
  • 12
    • 10344263455 scopus 로고    scopus 로고
    • A Modified Quasi-Boundary Value Method for Ill-Posed Problems
    • Denche, M., and Bessila, K., 2005. “A Modified Quasi-Boundary Value Method for Ill-Posed Problems”. Journal of Mathematical Analysis and Applications, 301 (2):419–426.
    • (2005) Journal of Mathematical Analysis and Applications , vol.301 , Issue.2 , pp. 419-426
    • Denche, M.1    Bessila, K.2
  • 13
    • 84966213190 scopus 로고
    • Time Discretization in the Backward Solution of Parabolic Equations. II
    • Eldén, L., 1982. “Time Discretization in the Backward Solution of Parabolic Equations. II”. Mathematics of Computation, 39 (159):69–84.
    • (1982) Mathematics of Computation , vol.39 , Issue.159 , pp. 69-84
    • Eldén, L.1
  • 14
    • 0001293247 scopus 로고
    • The Boundary Element Method for the Solution of the Backward Heat Conduction Equation
    • Han, H., Ingham, D. B., and Yuan, Y., 1995. “The Boundary Element Method for the Solution of the Backward Heat Conduction Equation”. Journal of Computational Physics, 116 (2):292–299.
    • (1995) Journal of Computational Physics , vol.116 , Issue.2 , pp. 292-299
    • Han, H.1    Ingham, D.B.2    Yuan, Y.3
  • 15
    • 26444607513 scopus 로고    scopus 로고
    • Regularization for a Class of Ill-Posed Cauchy Problems
    • Huang, Y., and Zheng, Q., 2005. “Regularization for a Class of Ill-Posed Cauchy Problems”. Proceedings of the American Mathematical Society, 133 (10):3005–3012.
    • (2005) Proceedings of the American Mathematical Society , vol.133 , Issue.10 , pp. 3005-3012
    • Huang, Y.1    Zheng, Q.2
  • 16
    • 3142679353 scopus 로고    scopus 로고
    • Numerical Solution of Backward Heat Conduction Problems by a High Order Lattice-Free Finite Difference Method
    • Iijima, K., 2004. “Numerical Solution of Backward Heat Conduction Problems by a High Order Lattice-Free Finite Difference Method”. Journal of the Chinese Institute of Engineers, 27 (4):611–620.
    • (2004) Journal of the Chinese Institute of Engineers , vol.27 , Issue.4 , pp. 611-620
    • Iijima, K.1
  • 17
    • 0036697675 scopus 로고    scopus 로고
    • An Iterative Algorithm for the Backward Heat Conduction Problem Based on Variable Relaxation Factors
    • Jourhmane, M., and Mera, N. S., 2002. “An Iterative Algorithm for the Backward Heat Conduction Problem Based on Variable Relaxation Factors”. Inverse Problem in Science and Engineering, 10 (4):293–308.
    • (2002) Inverse Problem in Science and Engineering , vol.10 , Issue.4 , pp. 293-308
    • Jourhmane, M.1    Mera, N.S.2
  • 18
    • 0344514171 scopus 로고    scopus 로고
    • Solution of Inverse Diffusion Problems by Operator-Splitting Methods
    • Kirkup, S. M., and Wadsworth, M., 2002. “Solution of Inverse Diffusion Problems by Operator-Splitting Methods”. Applied Mathematical Modelling, 26 (10):1003–1018.
    • (2002) Applied Mathematical Modelling , vol.26 , Issue.10 , pp. 1003-1018
    • Kirkup, S.M.1    Wadsworth, M.2
  • 20
    • 0000898783 scopus 로고    scopus 로고
    • An Iterative Boundary Element Method for Solving the Backward Heat Conduction Problem Using an Elliptic Approximation
    • Lesnic, D., Elliott, L., and Ingham, D. B., 1998. “An Iterative Boundary Element Method for Solving the Backward Heat Conduction Problem Using an Elliptic Approximation”. Inverse Problem in Science and Engineering, 6 (4):255–279.
    • (1998) Inverse Problem in Science and Engineering , vol.6 , Issue.4 , pp. 255-279
    • Lesnic, D.1    Elliott, L.2    Ingham, D.B.3
  • 21
    • 0035480574 scopus 로고    scopus 로고
    • Cone of Non-Linear Dynamical System and Group Preserving Schemes
    • Liu, C.-S., 2001. “Cone of Non-Linear Dynamical System and Group Preserving Schemes”. International Journal of Non-Linear Mechanics, 36 (7):1047–1068.
    • (2001) International Journal of Non-Linear Mechanics , vol.36 , Issue.7 , pp. 1047-1068
    • Liu, C.-S.1
  • 22
    • 1842534840 scopus 로고    scopus 로고
    • Group Preserving Scheme for Backward Heat Conduction Problems
    • Liu, C.-S., 2004. “Group Preserving Scheme for Backward Heat Conduction Problems”. International Journal of Heat and Mass Transfer, 47 (12–13):2567–2576.
    • (2004) International Journal of Heat and Mass Transfer , vol.47 , Issue.12-13 , pp. 2567-2576
    • Liu, C.-S.1
  • 23
    • 33744980037 scopus 로고    scopus 로고
    • The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions
    • Liu, C. S., 2006. “The Lie-Group Shooting Method for Nonlinear Two-Point Boundary Value Problems Exhibiting Multiple Solutions”. CMES:Computer Modeling in Engineering & Science, 13 (2):149–163.
    • (2006) CMES: Computer Modeling in Engineering & Science , vol.13 , Issue.2 , pp. 149-163
    • Liu, C.S.1
  • 24
    • 33646850601 scopus 로고    scopus 로고
    • Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems
    • Liu, C.-S., Chang, C.-W., and Chang, J.-R., 2006. “Past Cone Dynamics and Backward Group Preserving Schemes for Backward Heat Conduction Problems”. CMES:Computer Modeling in Engineering & Science, 12 (1):67–81.
    • (2006) CMES: Computer Modeling in Engineering & Science , vol.12 , Issue.1 , pp. 67-81
    • Liu, C.-S.1    Chang, C.-W.2    Chang, J.-R.3
  • 25
    • 34249835495 scopus 로고
    • Regularization of Ill-Posed Differential Problems
    • Mel'nikova, I. V., 1992. “Regularization of Ill-Posed Differential Problems”. Siberian Mathematical Journal, 33 (2):289–298.
    • (1992) Siberian Mathematical Journal , vol.33 , Issue.2 , pp. 289-298
    • Mel'nikova, I.V.1
  • 26
    • 12344271462 scopus 로고    scopus 로고
    • The Method of Fundamental Solutions for the Backward Heat Conduction Problem
    • Mera, N. S., 2005. “The Method of Fundamental Solutions for the Backward Heat Conduction Problem”. Inverse Problem in Science and Engineering, 13 (1):65–78.
    • (2005) Inverse Problem in Science and Engineering , vol.13 , Issue.1 , pp. 65-78
    • Mera, N.S.1
  • 27
    • 0036749217 scopus 로고    scopus 로고
    • An Inversion Method with Decreasing Regularization for the Backward Heat Conduction Problem
    • Mera, N. S., Elliott, L., and Ingham, D. B., 2002. “An Inversion Method with Decreasing Regularization for the Backward Heat Conduction Problem”. Numerical Heat Transfer, Part B:Fundamentals, 42 (3):215–230.
    • (2002) Numerical Heat Transfer, Part B: Fundamentals , vol.42 , Issue.3 , pp. 215-230
    • Mera, N.S.1    Elliott, L.2    Ingham, D.B.3
  • 28
    • 0034744604 scopus 로고    scopus 로고
    • An Iterative Boundary Element Method for Solving the One-Dimensional Backward Heat Conduction Problem
    • Mera, N. S., Elliott, L., Ingham, D. B., and Lesnic, D., 2001. “An Iterative Boundary Element Method for Solving the One-Dimensional Backward Heat Conduction Problem”. International Journal of Heat and Mass Transfer, 44 (10):1937–1946.
    • (2001) International Journal of Heat and Mass Transfer , vol.44 , Issue.10 , pp. 1937-1946
    • Mera, N.S.1    Elliott, L.2    Ingham, D.B.3    Lesnic, D.4
  • 29
    • 0040225041 scopus 로고
    • Stabilized Quasireversibility and Other Nearly Best Possible Methods for Non-Well Posed Problems
    • Berlin: Springer-Verlag
    • Miller, K., 1973. “Stabilized Quasireversibility and Other Nearly Best Possible Methods for Non-Well Posed Problems,”. In Lecture Notes in Math, Vol. 316, 161–176. Berlin:Springer-Verlag.
    • (1973) Lecture Notes in Math , vol.316 , pp. 161-176
    • Miller, K.1
  • 30
    • 0033096606 scopus 로고    scopus 로고
    • A Comparison of Some Inverse Methods for Estimating the Initial Condition of the Heat Equation
    • Muniz, W. B., de Campos Velho, H. F., and Ramos, F. M., 1999. “A Comparison of Some Inverse Methods for Estimating the Initial Condition of the Heat Equation”. Journal of Computational and Applied Mathematics, 103 (1):145–163.
    • (1999) Journal of Computational and Applied Mathematics , vol.103 , Issue.1 , pp. 145-163
    • Muniz, W.B.1    de Campos Velho, H.F.2    Ramos, F.M.3
  • 31
    • 0342520839 scopus 로고    scopus 로고
    • Entropy- and Tikhonov-Based Regularization Techniques Applied to the Backward Heat Equation
    • Muniz, W. B., Ramos, F. M., and de Campos Velho, H. F., 2000. “Entropy- and Tikhonov-Based Regularization Techniques Applied to the Backward Heat Equation”. Computers and Mathematics with Applications, 40 (8–9):1071–1084.
    • (2000) Computers and Mathematics with Applications , vol.40 , Issue.8-9 , pp. 1071-1084
    • Muniz, W.B.1    Ramos, F.M.2    de Campos Velho, H.F.3
  • 32
    • 0347085359 scopus 로고
    • Cauchy Problem for Hyper-parabolic Partial Differential Equations
    • Amsterdam, Netherlands: Elsevier
    • Showalter, R. E., 1983. “Cauchy Problem for Hyper-parabolic Partial Differential Equations,”. In Trends in the Theory and Practice of Non-Linear Analysis, 421–425. Amsterdam, Netherlands:Elsevier.
    • (1983) Trends in the Theory and Practice of Non-Linear Analysis , pp. 421-425
    • Showalter, R.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.