메뉴 건너뛰기




Volumn 20, Issue 2, 2007, Pages 441-465

Minimal surfaces with the area growth of two planes: The case of infinite symmetry

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77950569781     PISSN: 08940347     EISSN: None     Source Type: Journal    
DOI: 10.1090/S0894-0347-06-00537-6     Document Type: Article
Times cited : (17)

References (21)
  • 1
    • 0000936684 scopus 로고
    • The strong halfspace theorem for minimal surfaces
    • MR1062966 92e:53010
    • D. Hoffman and W. H. Meeks III. The strong halfspace theorem for minimal surfaces. Invent. Math., 101: 373-377, 1990. MR1062966 (92e:53010)
    • (1990) Invent. Math. , vol.101 , pp. 373-377
    • Hoffman, D.1    Meeks III., W.H.2
  • 2
    • 0001813682 scopus 로고
    • Embedded minimal surfaces derived from Scherk's examples
    • MR0958255 89i:53009
    • H. Karcher. Embedded minimal surfaces derived from Scherk's examples. Manuscripta Math., 62: 83-114, 1988. MR0958255 (89i:53009)
    • (1988) Manuscripta Math. , vol.62 , pp. 83-114
    • Karcher, H.1
  • 3
    • 0002410714 scopus 로고
    • Construction of minimal surfaces
    • University of Tokyo, 1989, and Lecture Notes No. 12, SFB256, Bonn, 1989
    • H. Karcher. Construction of minimal surfaces. Surveys in Geometry, pages 1-96, 1989. University of Tokyo, 1989, and Lecture Notes No. 12, SFB256, Bonn, 1989.
    • (1989) Surveys in Geometry , pp. 1-96
    • Karcher, H.1
  • 4
    • 0035578680 scopus 로고    scopus 로고
    • Classification of doubly-periodic minimal surfaces of genus zero
    • DOI 10.1007/s002220000085
    • H. Lazard-Holly and W. H. Meeks III. The classification of embedded doubly-periodic minimal surfaces of genus zero. Invent. Math., 143: 1-27, 2001. MR1802791 (2001m:53013) (Pubitemid 33725793)
    • (2001) Inventiones Mathematicae , vol.143 , Issue.1 , pp. 1-27
    • Lazard-Holly, H.1    Meeks III, W.H.2
  • 6
    • 77950572990 scopus 로고    scopus 로고
    • of Surveys in Differential Geometry. International Press, edited by S. T. Yau, MR2039993 2005b:53014
    • W. H. Meeks III. Geometric results in classical minimal surface theory, volume 8 of Surveys in Differential Geometry. International Press, edited by S. T. Yau, 2003. MR2039993 (2005b:53014)
    • (2003) Geometric Results in Classical Minimal Surface Theory , vol.8
    • Meeks III, W.H.1
  • 7
    • 33845510134 scopus 로고    scopus 로고
    • Global problems in classical minimal surface theory
    • American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA, edited by D. Hoffman, MR2167272 2006f:53011
    • W. H. Meeks III. Global problems in classical minimal surface theory. In Global theory of minimal surfaces, pages 453-470. American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA, edited by D. Hoffman, 2005. MR2167272 (2006f:53011)
    • (2005) Global Theory of Minimal Surfaces , pp. 453-470
    • Meeks III, W.H.1
  • 9
    • 0347131191 scopus 로고    scopus 로고
    • Uniqueness of the Riemann minimal examples
    • MR1626477 99b:53013
    • W. H. Meeks III, J. Pérez, and A. Ros. Uniqueness of the Riemann minimal examples. Invent. Math., 131: 107-132, 1998. MR1626477 (99b:53013)
    • (1998) Invent. Math. , vol.131 , pp. 107-132
    • Meeks III, W.H.1    Pérez, J.2    Ros, A.3
  • 10
    • 0001341418 scopus 로고
    • The global theory of doubly periodic minimal surfaces
    • MR1001845 90m:53017
    • W. H. Meeks III and H. Rosenberg. The global theory of doubly periodic minimal surfaces. Invent. Math., 97: 351-379, 1989. MR1001845 (90m:53017)
    • (1989) Invent. Math. , vol.97 , pp. 351-379
    • Meeks III, W.H.1    Rosenberg, H.2
  • 11
    • 51249178158 scopus 로고
    • The maximum principle at infinity for minimal surfaces in flat three-manifolds
    • MR1057243 91d:53011
    • W. H. Meeks III and H. Rosenberg. The maximum principle at infinity for minimal surfaces in flat three-manifolds. Comment. Math. Helvetici, 65: 255-270, 1990. MR1057243 (91d:53011)
    • (1990) Comment. Math. Helvetici , vol.65 , pp. 255-270
    • Meeks III, W.H.1    Rosenberg, H.2
  • 12
    • 51249168100 scopus 로고
    • The geometry of periodic minimal surfaces
    • MR1241472 95a:53011
    • W. H. Meeks III and H. Rosenberg. The geometry of periodic minimal surfaces. Comment. Math. Helvetici, 68: 538-578, 1993. MR1241472 (95a:53011)
    • (1993) Comment. Math. Helvetici , vol.68 , pp. 538-578
    • Meeks III, W.H.1    Rosenberg, H.2
  • 13
    • 33745001209 scopus 로고    scopus 로고
    • The classification of doubly periodic minimal tori with parallel ends
    • MR2170278
    • J. Pérez, M. Rodríguez, and M. Traizet. The classification of doubly periodic minimal tori with parallel ends. Journal of Diff. Geometry, 69(3):523-577, 2005. MR2170278
    • (2005) Journal of Diff. Geometry , vol.69 , Issue.3 , pp. 523-577
    • Pérez, J.1    Rodríguez, M.2    Traizet, M.3
  • 14
    • 33744976625 scopus 로고    scopus 로고
    • The classification of singly periodic minimal surfaces with genus zero and Scherk type ends
    • To appear
    • J. Pérez and M. Traizet. The classification of singly periodic minimal surfaces with genus zero and Scherk type ends. Transactions of the A. M. S. To appear.
    • Transactions of the A. M. S
    • Pérez, J.1    Traizet, M.2
  • 15
    • 84941477651 scopus 로고
    • Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen
    • H. F. Scherk. Bemerkungen über die kleinste Fläche innerhalb gegebener Grenzen. J. R. Angew. Math., 13: 185-208, 1835.
    • (1835) J. R. Angew. Math. , vol.13 , pp. 185-208
    • Scherk, H.F.1
  • 16
    • 84972545489 scopus 로고
    • Uniqueness, symmetry, and embeddedness of minimal surfaces
    • MR0730928 85f:53011
    • R. Schoen. Uniqueness, symmetry, and embeddedness of minimal surfaces. J. of Differential Geometry, 18: 791-809, 1983. MR0730928 (85f:53011)
    • (1983) J. of Differential Geometry , vol.18 , pp. 791-809
    • Schoen, R.1
  • 17
    • 0042287760 scopus 로고    scopus 로고
    • Weierstrass representation of some simply-periodic minimal surfaces
    • MR1846898 2002h:53015
    • M. Traizet. Weierstrass representation of some simply-periodic minimal surfaces. Ann. Global Anal. Geom., 20: 77-101, 2001. MR1846898 (2002h:53015)
    • (2001) Ann. Global Anal. Geom. , vol.20 , pp. 77-101
    • Traizet, M.1
  • 18
    • 7244261485 scopus 로고    scopus 로고
    • An embedded minimal surface with no symmetries
    • MR1924593 2004c:53008
    • M. Traizet. An embedded minimal surface with no symmetries. J. Differential Geometry, 60(1):103-153, 2002. MR1924593 (2004c:53008)
    • (2002) J. Differential Geometry , vol.60 , Issue.1 , pp. 103-153
    • Traizet, M.1
  • 19
    • 0032412406 scopus 로고    scopus 로고
    • Minimal surfaces of least total curvature and moduli spaces of plane polygonal arcs
    • MR1664793 99m:53020
    • M. Weber and M. Wolf. Minimal surfaces of least total curvature and moduli spaces of plane polygonal arcs. Geom. Funct. Anal., 8: 1129-1170, 1998. MR1664793 (99m:53020)
    • (1998) Geom. Funct. Anal. , vol.8 , pp. 1129-1170
    • Weber, M.1    Wolf, M.2
  • 20
    • 0036879842 scopus 로고    scopus 로고
    • Teichmüller theory and handle addition for minimal surfaces
    • MR1954234 2005j:53012
    • M. Weber and M. Wolf. Teichmüller theory and handle addition for minimal surfaces. Annals of Math., 156: 713-795, 2002. MR1954234 (2005j:53012)
    • (2002) Annals of Math. , vol.156 , pp. 713-795
    • Weber, M.1    Wolf, M.2
  • 21
    • 77950553802 scopus 로고    scopus 로고
    • Flat structures, Teichmüller theory and handle addition for minimal surfaces
    • American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA, edited by D. Hoffman, MR2167261
    • M. Wolf. Flat structures, Teichmüller theory and handle addition for minimal surfaces. In Global theory of minimal surfaces, pages 211-241. American Mathematical Society, Providence, RI, for the Clay Mathematics Institute, Cambridge, MA, edited by D. Hoffman, 2005. MR2167261
    • (2005) Global Theory of Minimal Surfaces , pp. 211-241
    • Wolf, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.