메뉴 건너뛰기




Volumn 81, Issue 3, 2010, Pages

A high-resolution two-dimensional imaging velocimeter

Author keywords

[No Author keywords available]

Indexed keywords

ABLATORS; FIELD OF VIEWS; FUNCTION OF TIME; HIGH RESOLUTION; HIGH-RESOLUTION MEASUREMENTS; INDIRECT-DRIVE; MICROSCOPIC FLUCTUATIONS; OPTICAL ARRANGEMENT; PICOSECOND TIME; SHOCK FRONTS; SHOCKED INTERFACES; SINGLE POINT; TWO-DIMENSIONAL IMAGING; VELOCITY FIELD; VELOCITY INTERFEROMETER;

EID: 77950555060     PISSN: 00346748     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3310076     Document Type: Article
Times cited : (59)

References (24)
  • 1
  • 2
    • 0032142506 scopus 로고    scopus 로고
    • 0167-6636,. 10.1016/S0167-6636(98)00015-5
    • D. E. Grady, Mech. Mater. 0167-6636 29, 181 (1998). 10.1016/S0167- 6636(98)00015-5
    • (1998) Mech. Mater. , vol.29 , pp. 181
    • Grady, D.E.1
  • 3
    • 18744436729 scopus 로고    scopus 로고
    • 0163-1829,. 10.1103/PhysRevB.66.014108
    • D. E. Hare, N. C. Holmes, and D. J. Webb, Phys. Rev. B 0163-1829 66, 014108 (2002). 10.1103/PhysRevB.66.014108
    • (2002) Phys. Rev. B , vol.66 , pp. 014108
    • Hare, D.E.1    Holmes, N.C.2    Webb, D.J.3
  • 8
    • 0016091032 scopus 로고
    • 0021-8979,. 10.1063/1.1663841
    • L. M. Barker and K. W. Schuler, J. Appl. Phys. 0021-8979 45, 3692 (1974). 10.1063/1.1663841
    • (1974) J. Appl. Phys. , vol.45 , pp. 3692
    • Barker, L.M.1    Schuler, K.W.2
  • 9
    • 0018293085 scopus 로고
    • VELOCITY SENSING INTERFEROMETER (VISAR) MODIFICATION.
    • DOI 10.1063/1.1135672
    • W. F. Hemsing, Rev. Sci. Instrum. 0034-6748 50, 73 (1979). 10.1063/1.1135672 (Pubitemid 9424087)
    • (1979) Rev Sci Instrum , vol.50 , Issue.1 , pp. 73-78
    • Hemsing Willard, F.1
  • 13
    • 0029410451 scopus 로고
    • 1070-664X,. 10.1063/1.871025
    • J. Lindl, Phys. Plasmas 1070-664X 2, 3933 (1995). 10.1063/1.871025
    • (1995) Phys. Plasmas , vol.2 , pp. 3933
    • Lindl, J.1
  • 17
    • 0013464811 scopus 로고
    • 0899-8221,. 10.1063/1.859091
    • D. H. Munro, Phys. Fluids B 0899-8221 1, 134 (1989). 10.1063/1.859091
    • (1989) Phys. Fluids B , vol.1 , pp. 134
    • Munro, D.H.1
  • 18
    • 37649031370 scopus 로고    scopus 로고
    • 1063-651X,. 10.1103/PhysRevE.69.056313
    • J. W. Bates, Phys. Rev. E 1063-651X 69, 056313 (2004). 10.1103/PhysRevE.69.056313
    • (2004) Phys. Rev. e , vol.69 , pp. 056313
    • Bates, J.W.1
  • 20
    • 77950575988 scopus 로고    scopus 로고
    • The output phase in this data set was slightly contaminated by a ghost reflection from the external surface of the target package which interfered with the reflection from the shock front, because the two surfaces were within the coherence length of the probe pulse. Although the external surface was antireflection coated, such coatings are never perfect, and its contribution is apparent at a residual level. This problem is easily corrected by changing the dimensions of the target package (increasing the thickness of the PMMA layer), and it is not present for reflections from free surfaces
    • The output phase in this data set was slightly contaminated by a ghost reflection from the external surface of the target package which interfered with the reflection from the shock front, because the two surfaces were within the coherence length of the probe pulse. Although the external surface was antireflection coated, such coatings are never perfect, and its contribution is apparent at a residual level. This problem is easily corrected by changing the dimensions of the target package (increasing the thickness of the PMMA layer), and it is not present for reflections from free surfaces.
  • 21
    • 77950560000 scopus 로고    scopus 로고
    • The peak-to-valley ripple velocity can be estimated as δV=4π c δA/T∼50 m/s, where δA=125 nm is the imposed perturbation amplitude, T∼2.4 ns is the period, and c∼0.08 is a coupling factor related to the incident and transmitted shock velocities
    • The peak-to-valley ripple velocity can be estimated as δV=4π c δA/T∼50 m/s, where δA=125 nm is the imposed perturbation amplitude, T∼2.4 ns is the period, and c∼0.08 is a coupling factor related to the incident and transmitted shock velocities.
  • 22
    • 77950557467 scopus 로고    scopus 로고
    • When the expected signal occupies a narrow spectral band (such as the imposed ripple mode) the effective noise floor is obtained by a quadrature summation of the noise spectrum over the spectral components contained within the expected frequency band; thus, the effective noise for the ripple signal quoted above, 1.7 m/s rms or ±5 m/s peak-to-valley, is smaller than the total rms noise because it occupies only a portion of the spectrum
    • When the expected signal occupies a narrow spectral band (such as the imposed ripple mode) the effective noise floor is obtained by a quadrature summation of the noise spectrum over the spectral components contained within the expected frequency band; thus, the effective noise for the ripple signal quoted above, 1.7 m/s rms or ±5 m/s peak-to-valley, is smaller than the total rms noise because it occupies only a portion of the spectrum.
  • 23
    • 84975582306 scopus 로고
    • 0003-6935,. 10.1364/AO.26.002676
    • N. Bobroff, Appl. Opt. 0003-6935 26, 2676 (1987). 10.1364/AO.26.002676
    • (1987) Appl. Opt. , vol.26 , pp. 2676
    • Bobroff, N.1
  • 24
    • 0021918163 scopus 로고
    • 0003-6935,. 10.1364/AO.24.000808
    • W. T. Estler, Appl. Opt. 0003-6935 24, 808 (1985). 10.1364/AO.24.000808
    • (1985) Appl. Opt. , vol.24 , pp. 808
    • Estler, W.T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.