-
1
-
-
0020847928
-
STUDIES OF THE SPECTRAL AND SPATIAL CHARACTERISTICS OF SHOCK-INDUCED LUMINESCENCE FROM x-CUT QUARTZ.
-
DOI 10.1063/1.331913
-
P. J. Brannon, C. Konrad, R. W. Morris, E. D. Jones, and J. R. Asay, J. Appl. Phys. 0021-8979 54, 6374 (1983). 10.1063/1.331913 (Pubitemid 14484199)
-
(1983)
Journal of Applied Physics
, vol.54
, Issue.11
, pp. 6374-6381
-
-
Brannon, P.J.1
Konrad, C.2
Morris, R.W.3
Jones, E.D.4
Asay, J.R.5
-
2
-
-
0032142506
-
-
0167-6636,. 10.1016/S0167-6636(98)00015-5
-
D. E. Grady, Mech. Mater. 0167-6636 29, 181 (1998). 10.1016/S0167- 6636(98)00015-5
-
(1998)
Mech. Mater.
, vol.29
, pp. 181
-
-
Grady, D.E.1
-
3
-
-
18744436729
-
-
0163-1829,. 10.1103/PhysRevB.66.014108
-
D. E. Hare, N. C. Holmes, and D. J. Webb, Phys. Rev. B 0163-1829 66, 014108 (2002). 10.1103/PhysRevB.66.014108
-
(2002)
Phys. Rev. B
, vol.66
, pp. 014108
-
-
Hare, D.E.1
Holmes, N.C.2
Webb, D.J.3
-
4
-
-
33644511124
-
Atomistic simulations of shock-induced transformations and their orientation dependence in bcc Fe single crystals
-
DOI 10.1103/PhysRevB.72.064120
-
K. Kadau, T. C. Germann, P. S. Lomdahl, and B. L. Holian, Phys. Rev. B 0163-1829 72, 064120 (2005). 10.1103/PhysRevB.72.064120 (Pubitemid 43292004)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.72
, Issue.6
, pp. 064120
-
-
Kadau, K.1
Germann, T.C.2
Lomdahl, P.S.3
Holian, B.L.4
-
5
-
-
33847733084
-
Investigation of the mesoscopic scale response of low-density pressings of granular sugar under impact
-
DOI 10.1063/1.2427093
-
W. M. Trott, M. R. Baer, J. N. Castaneda, L. C. Chhabildas, and J. R. Asay, J. Appl. Phys. 0021-8979 101, 024917 (2007). 10.1063/1.2427093 (Pubitemid 46372889)
-
(2007)
Journal of Applied Physics
, vol.101
, Issue.2
, pp. 024917
-
-
Trott, W.M.1
Baer, M.R.2
Castaneda, J.N.3
Chhabildas, L.C.4
Asay, J.R.5
-
6
-
-
56949102081
-
-
0734-743X,. 10.1016/j.ijimpeng.2008.07.040
-
T. J. Vogler, W. M. Trott, W. D. Reinhart, C. S. Alexander, M. D. Furnish, M. D. Knudson, and L. C. Chhabildas, Int. J. Impact Eng. 0734-743X 35, 1844 (2008). 10.1016/j.ijimpeng.2008.07.040
-
(2008)
Int. J. Impact Eng.
, vol.35
, pp. 1844
-
-
Vogler, T.J.1
Trott, W.M.2
Reinhart, W.D.3
Alexander, C.S.4
Furnish, M.D.5
Knudson, M.D.6
Chhabildas, L.C.7
-
9
-
-
0018293085
-
VELOCITY SENSING INTERFEROMETER (VISAR) MODIFICATION.
-
DOI 10.1063/1.1135672
-
W. F. Hemsing, Rev. Sci. Instrum. 0034-6748 50, 73 (1979). 10.1063/1.1135672 (Pubitemid 9424087)
-
(1979)
Rev Sci Instrum
, vol.50
, Issue.1
, pp. 73-78
-
-
Hemsing Willard, F.1
-
10
-
-
0006210791
-
-
edited by S. C. Schmidt, R. D. Dick, J. W. Forbes, and D. G. Tasker (North-Holland, Amsterdam)
-
W. F. Hemsing, A. R. Mathews, R. H. Warnes, M. J. George, and G. R. Whittemore, in Shock Compression of Condensed Matter-1991, edited by, S. C. Schmidt, R. D. Dick, J. W. Forbes, and, D. G. Tasker, (North-Holland, Amsterdam, 1992), pp. 767-770.
-
(1992)
Shock Compression of Condensed Matter-1991
, pp. 767-770
-
-
Hemsing, W.F.1
Mathews, A.R.2
Warnes, R.H.3
George, M.J.4
Whittemore, G.R.5
-
11
-
-
0004706156
-
-
edited by S. Schmidt and W. Tao (AIP, Woodbury, NY)
-
K. Baumung, J. Singer, S. Razorenov, and A. Utkin, in Shock Compression of Condensed Matter-1995, edited by, S. Schmidt, and, W. Tao, (AIP, Woodbury, NY, 1996), p. 1015.
-
(1996)
Shock Compression of Condensed Matter-1995
, pp. 1015
-
-
Baumung, K.1
Singer, J.2
Razorenov, S.3
Utkin, A.4
-
12
-
-
10844264036
-
Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility
-
DOI 10.1063/1.1807008
-
P. M. Celliers, D. K. Bradley, G. W. Collins, D. G. Hicks, T. R. Boehly, and W. J. Armstrong, Rev. Sci. Instrum. 0034-6748 75, 4916 (2004). 10.1063/1.1807008 (Pubitemid 40001819)
-
(2004)
Review of Scientific Instruments
, vol.75
, Issue.11
, pp. 4916-4929
-
-
Celliers, P.M.1
Bradley, D.K.2
Collins, G.W.3
Hicks, D.G.4
Boehly, T.R.5
Armstrong, W.J.6
-
13
-
-
0029410451
-
-
1070-664X,. 10.1063/1.871025
-
J. Lindl, Phys. Plasmas 1070-664X 2, 3933 (1995). 10.1063/1.871025
-
(1995)
Phys. Plasmas
, vol.2
, pp. 3933
-
-
Lindl, J.1
-
14
-
-
65349114097
-
-
1536-1055
-
S. W. Haan, D. A. Callahan, M. J. Edwards, B. A. Hammel, D. D. Ho, O. S. Jones, J. D. Lindl, B. J. MacGowan, M. M. Marinak, D. H. Munro, S. M. Pollaine, J. D. Salmonson, B. K. Spears, and L. J. Suter, Fusion Sci. Technol. 1536-1055 55, 227 (2009).
-
(2009)
Fusion Sci. Technol.
, vol.55
, pp. 227
-
-
Haan, S.W.1
Callahan, D.A.2
Edwards, M.J.3
Hammel, B.A.4
Ho, D.D.5
Jones, O.S.6
Lindl, J.D.7
MacGowan, B.J.8
Marinak, M.M.9
Munro, D.H.10
Pollaine, S.M.11
Salmonson, J.D.12
Spears, B.K.13
Suter, L.J.14
-
17
-
-
0013464811
-
-
0899-8221,. 10.1063/1.859091
-
D. H. Munro, Phys. Fluids B 0899-8221 1, 134 (1989). 10.1063/1.859091
-
(1989)
Phys. Fluids B
, vol.1
, pp. 134
-
-
Munro, D.H.1
-
18
-
-
37649031370
-
-
1063-651X,. 10.1103/PhysRevE.69.056313
-
J. W. Bates, Phys. Rev. E 1063-651X 69, 056313 (2004). 10.1103/PhysRevE.69.056313
-
(2004)
Phys. Rev. e
, vol.69
, pp. 056313
-
-
Bates, J.W.1
-
19
-
-
0030782813
-
-
0030-4018,. 10.1016/S0030-4018(96)00325-2
-
T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 0030-4018 133, 495 (1997). 10.1016/S0030-4018(96)00325-2
-
(1997)
Opt. Commun.
, vol.133
, pp. 495
-
-
Boehly, T.R.1
Brown, D.L.2
Craxton, R.S.3
Keck, R.L.4
Knauer, J.P.5
Kelly, J.H.6
Kessler, T.J.7
Kumpan, S.A.8
Loucks, S.J.9
Letzring, S.A.10
Marshall, F.J.11
McCrory, R.L.12
Morse, S.F.B.13
Seka, W.14
Soures, J.M.15
Verdon, C.P.16
-
20
-
-
77950575988
-
-
The output phase in this data set was slightly contaminated by a ghost reflection from the external surface of the target package which interfered with the reflection from the shock front, because the two surfaces were within the coherence length of the probe pulse. Although the external surface was antireflection coated, such coatings are never perfect, and its contribution is apparent at a residual level. This problem is easily corrected by changing the dimensions of the target package (increasing the thickness of the PMMA layer), and it is not present for reflections from free surfaces
-
The output phase in this data set was slightly contaminated by a ghost reflection from the external surface of the target package which interfered with the reflection from the shock front, because the two surfaces were within the coherence length of the probe pulse. Although the external surface was antireflection coated, such coatings are never perfect, and its contribution is apparent at a residual level. This problem is easily corrected by changing the dimensions of the target package (increasing the thickness of the PMMA layer), and it is not present for reflections from free surfaces.
-
-
-
-
21
-
-
77950560000
-
-
The peak-to-valley ripple velocity can be estimated as δV=4π c δA/T∼50 m/s, where δA=125 nm is the imposed perturbation amplitude, T∼2.4 ns is the period, and c∼0.08 is a coupling factor related to the incident and transmitted shock velocities
-
The peak-to-valley ripple velocity can be estimated as δV=4π c δA/T∼50 m/s, where δA=125 nm is the imposed perturbation amplitude, T∼2.4 ns is the period, and c∼0.08 is a coupling factor related to the incident and transmitted shock velocities.
-
-
-
-
22
-
-
77950557467
-
-
When the expected signal occupies a narrow spectral band (such as the imposed ripple mode) the effective noise floor is obtained by a quadrature summation of the noise spectrum over the spectral components contained within the expected frequency band; thus, the effective noise for the ripple signal quoted above, 1.7 m/s rms or ±5 m/s peak-to-valley, is smaller than the total rms noise because it occupies only a portion of the spectrum
-
When the expected signal occupies a narrow spectral band (such as the imposed ripple mode) the effective noise floor is obtained by a quadrature summation of the noise spectrum over the spectral components contained within the expected frequency band; thus, the effective noise for the ripple signal quoted above, 1.7 m/s rms or ±5 m/s peak-to-valley, is smaller than the total rms noise because it occupies only a portion of the spectrum.
-
-
-
-
23
-
-
84975582306
-
-
0003-6935,. 10.1364/AO.26.002676
-
N. Bobroff, Appl. Opt. 0003-6935 26, 2676 (1987). 10.1364/AO.26.002676
-
(1987)
Appl. Opt.
, vol.26
, pp. 2676
-
-
Bobroff, N.1
-
24
-
-
0021918163
-
-
0003-6935,. 10.1364/AO.24.000808
-
W. T. Estler, Appl. Opt. 0003-6935 24, 808 (1985). 10.1364/AO.24.000808
-
(1985)
Appl. Opt.
, vol.24
, pp. 808
-
-
Estler, W.T.1
|