-
1
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 1991, 4(2): 251-257.
-
(1991)
Neural Networks
, vol.4
, Issue.2
, pp. 251-257
-
-
Hornik, K.1
-
2
-
-
0027262895
-
Multilayer feedforward networks with a nonpolynomial activation function can approximate any function
-
Leshno M, Lin V Y, Pinkus A, Schocken S. Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Networks, 1993, 6(6): 861-867.
-
(1993)
Neural Networks
, vol.6
, Issue.6
, pp. 861-867
-
-
Leshno, M.1
Lin, V.Y.2
Pinkus, A.3
Schocken, S.4
-
3
-
-
0031673055
-
Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions
-
Huang G-B, Babri H A. Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transactions on Neural Networks, 1998, 9(1): 224-229.
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, Issue.1
, pp. 224-229
-
-
Huang, G.-B.1
Babri, H.A.2
-
4
-
-
0037361264
-
Learning capability and storage capacity of two hidden-layer feedforward networks
-
Huang G-B. Learning capability and storage capacity of two hidden-layer feedforward networks. IEEE Transactions on Neural Networks, 2003, 14(2): 274-281.
-
(2003)
IEEE Transactions on Neural Networks
, vol.14
, Issue.2
, pp. 274-281
-
-
Huang, G.-B.1
-
5
-
-
33745903481
-
Extreme learning machine: Theory and applications
-
Huang G-B, Zhu Q-Y, Siew C-K. Extreme learning machine: Theory and applications. Neurocomputing, 2006, 70(1-3): 489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
10
-
-
0031100287
-
Capabilities of a four-layered feedforward neural network: Four layers versus three
-
Tamura S, Tateishi M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Transactions on Neural Networks, 1997, 8(2): 251-255.
-
(1997)
IEEE Transactions on Neural Networks
, vol.8
, Issue.2
, pp. 251-255
-
-
Tamura, S.1
Tateishi, M.2
-
13
-
-
0002343859
-
Introduction to statistical learning theory and support vector machines
-
in Chinese
-
Zhang Xue-Gong. Introduction to statistical learning theory and support vector machines. Acta Automatica Sinica, 2000, 26(1): 32-42(in Chinese).
-
(2000)
Acta Automatica Sinica
, vol.26
, Issue.1
, pp. 32-42
-
-
Zhang, X.-G.1
-
14
-
-
0013221347
-
Early sample measures of variability
-
David H A. Early sample measures of variability. Statistical Science, 1998, 13(4): 368-377.
-
(1998)
Statistical Science
, vol.13
, Issue.4
, pp. 368-377
-
-
David, H.A.1
-
15
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
Suykens J A K, De Brabanter J, Lukas L, Vandewaile J. Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 2002, 48(1): 85-105.
-
(2002)
Neurocomputing
, vol.48
, Issue.1
, pp. 85-105
-
-
Suykens, J.A.K.1
de Brabanter, J.2
Lukas, L.3
Vandewaile, J.4
-
16
-
-
0036505670
-
A comparison of methods for multiclass support vector machines
-
Hsu C-W, Lin C-J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2): 415-425.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
17
-
-
0036583160
-
A parallel mixtures of SVMs for very large scale problems
-
Collobert R, Bengio S, Bengio Y. A parallel mixtures of SVMs for very large scale problems. Neural Computation, 2002, 14(5): 1105-1114.
-
(2002)
Neural Computation
, vol.14
, Issue.5
, pp. 1105-1114
-
-
Collobert, R.1
Bengio, S.2
Bengio, Y.3
-
18
-
-
0037313407
-
SMO algorithm for least squares SVM formulations
-
Keerthi S S, Shevade S K. SMO algorithm for least squares SVM formulations. Neural Computation, 2003, 15(2): 487-507.
-
(2003)
Neural Computation
, vol.15
, Issue.2
, pp. 487-507
-
-
Keerthi, S.S.1
Shevade, S.K.2
|