메뉴 건너뛰기




Volumn 53, Issue 4, 2010, Pages 439-450

The moments for q-Bernstein operators in the case 0 < q < 1

Author keywords

Central moment; Positive linear operator; q Bernstein operator; q Bernstein polynomials; q derivative

Indexed keywords


EID: 77950459048     PISSN: 10171398     EISSN: 15729265     Source Type: Journal    
DOI: 10.1007/s11075-009-9312-1     Document Type: Article
Times cited : (37)

References (14)
  • 2
    • 38949188657 scopus 로고    scopus 로고
    • Modifed Bernstein polynomials and Jacobi polynomials in q-calculus
    • Derriennic, M.-M.: Modifed Bernstein polynomials and Jacobi polynomials in q-calculus. Rend. Circ. Mat. Palermo (II)(Suppl. 76), 269-290 (2005).
    • (2005) Rend. Circ. Mat. Palermo (II) , Issue.SUPPL. 76 , pp. 269-290
    • Derriennic, M.-M.1
  • 3
    • 0036287075 scopus 로고    scopus 로고
    • Convergence of generalized Bernstein polynomials
    • II'nskii, A., Ostrovska, S.: Convergence of generalized Bernstein polynomials. J. Approx. Theory 116, 100-112 (2002).
    • (2002) J. Approx. Theory , vol.116 , pp. 100-112
    • Ii'nskii, A.1    Ostrovska, S.2
  • 4
    • 4043127644 scopus 로고    scopus 로고
    • Generalized Bernstein polynomials
    • Lewanowicz, S., Wozny, P.: Generalized Bernstein polynomials. BIT 44, 63-78 (2004).
    • (2004) Bit , vol.44 , pp. 63-78
    • Lewanowicz, S.1    Wozny, P.2
  • 5
    • 58049184521 scopus 로고
    • A q-analogue of the Bernstein operator
    • University of Cluj-Napoca
    • Lupaş, A.: A q-analogue of the Bernstein operator. In: Seminar on Numerical and Statistical Calculus, vol. 9, University of Cluj-Napoca (1987).
    • (1987) Seminar on Numerical and Statistical Calculus , vol.9
    • Lupaş, A.1
  • 6
    • 67349204512 scopus 로고    scopus 로고
    • Korovkin-type theorems and applications
    • doi: 10. 2478/s11533-009-0006-7
    • Mahmudov, N. I.: Korovkin-type theorems and applications. Cent. Eur. J. Math. doi: 10. 2478/s11533-009-0006-7.
    • Cent. Eur. J. Math
    • Mahmudov, N.I.1
  • 7
    • 38949211494 scopus 로고    scopus 로고
    • The first decade of the q-Bernstein polynomials: Results and perspectives
    • Ostrovska, S.: The first decade of the q-Bernstein polynomials: results and perspectives. J. Math. Anal. Approx. Theory 2, 35-51 (2007).
    • (2007) J. Math. Anal. Approx. Theory , vol.2 , pp. 35-51
    • Ostrovska, S.1
  • 8
    • 33846826629 scopus 로고    scopus 로고
    • On the Lupaş q-analogue of the Bernstein operator
    • Ostrovska, S.: On the Lupaş q-analogue of the Bernstein operator. Rocky Mt. J. Math. 36, 1615-1629 (2006).
    • (2006) Rocky Mt. J. Math. , vol.36 , pp. 1615-1629
    • Ostrovska, S.1
  • 9
    • 60549106684 scopus 로고    scopus 로고
    • The convergence of q-Bernstein polynomials (0 < q < 1) in the complex plane
    • Ostrovska, S.: The convergence of q-Bernstein polynomials (0 < q < 1) in the complex plane. Math. Nachr. 282(2), 243-252 (2009).
    • (2009) Math. Nachr. , vol.282 , Issue.2 , pp. 243-252
    • Ostrovska, S.1
  • 11
    • 26844561471 scopus 로고    scopus 로고
    • On some classes of q-parametric positive linear operators
    • Oper. Theory Adv. Appl, Basel: Birkhäuser
    • Videnskii, V. S.: On some classes of q-parametric positive linear operators. In: Selected Topics in Complex Analysis. Oper. Theory Adv. Appl., vol. 158, pp. 213-222. Birkhäuser, Basel (2005).
    • (2005) Selected Topics in Complex Analysis , vol.158 , pp. 213-222
    • Videnskii, V.S.1
  • 12
    • 13344287024 scopus 로고    scopus 로고
    • Korovkin-type theorem and application
    • Wang, H.: Korovkin-type theorem and application J. Approx. Theory 132, 258-264 (2005).
    • (2005) J. Approx. Theory , vol.132 , pp. 258-264
    • Wang, H.1
  • 13
    • 38049019804 scopus 로고    scopus 로고
    • Properties of convergence for ω, q-Bernstein polynomials
    • Wang, H.: Properties of convergence for ω, q-Bernstein polynomials. J. Math. Anal. Appl. 340, 1096-1108 (2008).
    • (2008) J. Math. Anal. Appl. , vol.340 , pp. 1096-1108
    • Wang, H.1
  • 14
    • 58049204399 scopus 로고    scopus 로고
    • Shape-preserving properties of ω,q-Bernstein polynomials
    • Wang, H.: Shape-preserving properties of ω, q-Bernstein polynomials. Linear Algebra Appl. 430, 957-967 (2009).
    • (2009) Linear Algebra Appl. , vol.430 , pp. 957-967
    • Wang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.