-
1
-
-
0000241853
-
Deterministic nonperiodic flow
-
Lorenz, E. N. Deterministic nonperiodic flow, J. Atmos. Sci. 20 (1963) 130-141
-
(1963)
J. Atmos. Sci.
, vol.20
, pp. 130-141
-
-
Lorenz, E.N.1
-
2
-
-
33751555569
-
Some simple chaotic flows
-
Sprott, J. C. Some simple chaotic flows, Phys. Rev. E 50(2)(1994)R647-R650
-
(1994)
Phys. Rev. E
, vol.50
, Issue.2
-
-
Sprott, J.C.1
-
3
-
-
49549126801
-
An equation for continuous chaos
-
Rössler, O. E. An equation for continuous chaos, Phys. Lett. A 57(1976)397-398
-
(1976)
Phys. Lett. A
, vol.57
, pp. 397-398
-
-
Rössler, O.E.1
-
4
-
-
0009153680
-
Remark on 'some simple chaotic flows'
-
Hoover, W. G. Remark on 'some simple chaotic flows', Phys. Rev. E 51(1)(1995)759-760
-
(1995)
Phys. Rev. E
, vol.51
, Issue.1
, pp. 759-760
-
-
Hoover, W.G.1
-
5
-
-
0001305336
-
What is the simplest jerk function that gives chaos?
-
Gottlieb, H. P. W. What is the simplest jerk function that gives chaos? Am. J. Phys. 64(1996)525
-
(1996)
Am. J. Phys.
, vol.64
, pp. 525
-
-
Gottlieb, H.P.W.1
-
6
-
-
0031478493
-
Nonlinear dynamical models and jerky motion
-
Linz, S. J. Nonlinear dynamical models and jerky motion, Am. J. Phys. 65(1997) 523-526
-
(1997)
Am. J. Phys.
, vol.65
, pp. 523-526
-
-
Linz, S.J.1
-
7
-
-
0041322255
-
Simplest dissipative chaotic flow
-
Sprott, J. C. Simplest dissipative chaotic flow, Phys. Lett. A 228(1997)271-274
-
(1997)
Phys. Lett. A
, vol.228
, pp. 271-274
-
-
Sprott, J.C.1
-
8
-
-
0031509406
-
Some simple chaotic jerk functions
-
Sprott, J. C. Some simple chaotic jerk functions, Am, J. Phys. 65 (1997)537-543
-
(1997)
Am, J. Phys.
, vol.65
, pp. 537-543
-
-
Sprott, J.C.1
-
9
-
-
0000885387
-
Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flow
-
Eichhorn, R. Linz, S. J. and Hänggi, P. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flow, Phys. Rev. E 58 (1998)7151-7164
-
(1998)
Phys. Rev. E
, vol.58
, pp. 7151-7164
-
-
Eichhorn, R.1
Linz, S.J.2
Hänggi, P.3
-
10
-
-
84985456277
-
Continuous chaos-four prototype equations
-
Rössler, O. E. Continuous chaos-four prototype equations, Ann. (N.Y.) Acad. Sci. 316(1979)376-392
-
(1979)
Ann. (N.Y.) Acad. Sci.
, vol.316
, pp. 376-392
-
-
Rössler, O.E.1
-
11
-
-
0036028187
-
Simple polynormial classes of chaotic jerky dynamics
-
Eichhorn, R. Linz, S. J. and Hänggi, P. Simple polynormial classes of chaotic jerky dynamics, Chaos, Solitons & Fractals 13(2002)1-15
-
(2002)
Chaos, Solitons & Fractals
, vol.13
, pp. 1-15
-
-
Eichhorn, R.1
Linz, S.J.2
Hänggi, P.3
-
12
-
-
0000670180
-
Elementary chaotic flow
-
Linz, S. J. and Sprott, J. C Elementary chaotic flow, Phys. Lett. A 259 (1999)240-245
-
(1999)
Phys. Lett. A
, vol.259
, pp. 240-245
-
-
Linz, S.J.1
Sprott, J.C.2
-
13
-
-
0034374714
-
Simplest chaotic systems and circuits
-
Sprott, J. C Simplest chaotic systems and circuits, Am. J. Phys. 68 (2000)758-763
-
(2000)
Am. J. Phys.
, vol.68
, pp. 758-763
-
-
Sprott, J.C.1
-
14
-
-
0034645889
-
A new class of chaotic circuit
-
Sprott, J. C. A new class of chaotic circuit, Phys. Lett. A 266(2000)19-23
-
(2000)
Phys. Lett. A
, vol.266
, pp. 19-23
-
-
Sprott, J.C.1
-
15
-
-
0034598268
-
What is the simplest dissipative chaotic jerk equation which is parity invariant?
-
Malasoma, J. M. What is the simplest dissipative chaotic jerk equation which is parity invariant? Phys. Lett. A 264 (2000)383-389
-
(2000)
Phys. Lett. A
, vol.264
, pp. 383-389
-
-
Malasoma, J.M.1
-
16
-
-
12344263145
-
Bifurcation and chaos in simple jerk dynamical systems
-
Patidar, V. and Sud, K. K. Bifurcation and chaos in simple jerk dynamical systems, Pramana - Journal of physics, 64(1) (2005)75-93
-
(2005)
Pramana - Journal of Physics
, vol.64
, Issue.1
, pp. 75-93
-
-
Patidar, V.1
Sud, K.K.2
-
18
-
-
0008494528
-
Determining lyapunov exponents from a time series
-
Wolf, A. Swift, J. Swinney, H. and Vastano, J. Determining Lyapunov exponents from a time series, Physica D 16(1985)285-317
-
(1985)
Physica D
, vol.16
, pp. 285-317
-
-
Wolf, A.1
Swift, J.2
Swinney, H.3
Vastano, J.4
|