메뉴 건너뛰기




Volumn 32, Issue 3, 2010, Pages 275-303

Harnack inequalities for some Lévy processes

Author keywords

Green function; Harmonic function; Harnack inequality; Poisson kernel; Random walk; Stable process; Subordinate Brownian motion; Subordinator

Indexed keywords


EID: 77950410247     PISSN: 09262601     EISSN: 1572929X     Source Type: Journal    
DOI: 10.1007/s11118-009-9153-5     Document Type: Article
Times cited : (6)

References (23)
  • 1
    • 13844296740 scopus 로고    scopus 로고
    • Harnack inequalities for non-local operators of variable order
    • Bass, R. F., Kassmann, M.: Harnack inequalities for non-local operators of variable order. Trans. Am. Math. Soc. 357, 837-850 (2005).
    • (2005) Trans. Am. Math. Soc. , vol.357 , pp. 837-850
    • Bass, R.F.1    Kassmann, M.2
  • 3
    • 0141457561 scopus 로고    scopus 로고
    • Harnack inequalities for jump processes
    • Bass, R. F., Levin, D. A.: Harnack inequalities for jump processes. Potential Anal. 17, 375-388 (2002).
    • (2002) Potential Anal. , vol.17 , pp. 375-388
    • Bass, R.F.1    Levin, D.A.2
  • 4
    • 0003975247 scopus 로고    scopus 로고
    • Cambridge: Cambridge University Press
    • Bertoin, J.: Lévy Processes. Cambridge University Press, Cambridge (1996).
    • (1996) Lévy Processes
    • Bertoin, J.1
  • 6
    • 0038583218 scopus 로고    scopus 로고
    • Potential theory for Lévy stable processes
    • Bogdan, K., Sztonyk, P.: Potential theory for Lévy stable processes. Bull. Pol. Acad. Sci., Math. 50, 361-372 (2002).
    • (2002) Bull. Pol. Acad. Sci., Math. , vol.50 , pp. 361-372
    • Bogdan, K.1    Sztonyk, P.2
  • 7
    • 34548537493 scopus 로고    scopus 로고
    • Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian
    • Bogdan, K., Sztonyk, P.: Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian. Stud. Math. 181, 101-123 (2007).
    • (2007) Stud. Math. , vol.181 , pp. 101-123
    • Bogdan, K.1    Sztonyk, P.2
  • 8
    • 15444362959 scopus 로고    scopus 로고
    • Harnack's inequality for stable Lévy processes
    • Bogdan, K., Sztonyk, P.: Harnack's inequality for stable Lévy processes. Potential Anal. 22, 133-150 (2005).
    • (2005) Potential Anal. , vol.22 , pp. 133-150
    • Bogdan, K.1    Sztonyk, P.2
  • 9
    • 0032335134 scopus 로고    scopus 로고
    • Estimates on green functions and poisson kernels of symmetric stable processes
    • Chen, Z.-Q., Song, R.: Estimates on green functions and poisson kernels of symmetric stable processes. Math. Ann. 312, 465-601 (1998).
    • (1998) Math. Ann. , vol.312 , pp. 465-601
    • Chen, Z.-Q.1    Song, R.2
  • 10
    • 52949110957 scopus 로고    scopus 로고
    • Weighted Poincaré inequality and heat kernel estimates for finite range jump processes
    • Chen, Z.-Q., Kim, P., Kumagai, T.: Weighted Poincaré inequality and heat kernel estimates for finite range jump processes. Math. Ann. 342, 833-883 (2008).
    • (2008) Math. Ann. , vol.342 , pp. 833-883
    • Chen, Z.-Q.1    Kim, P.2    Kumagai, T.3
  • 12
    • 0033481532 scopus 로고    scopus 로고
    • Parabolic Harnack inequality and estimates of Markov chains on graphs
    • Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15, 181-232 (1999).
    • (1999) Rev. Mat. Iberoam. , vol.15 , pp. 181-232
    • Delmotte, T.1
  • 14
    • 0036981648 scopus 로고    scopus 로고
    • Harnack inequalities and sub-Gaussian estimates for random walks
    • Grigor'yan, A., Telcs, A.: Harnack inequalities and sub-Gaussian estimates for random walks. Math. Ann. 324, 521-556 (2002).
    • (2002) Math. Ann. , vol.324 , pp. 521-556
    • Grigor'yan, A.1    Telcs, A.2
  • 15
    • 0012896944 scopus 로고
    • On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes
    • Ikeda, N., Watanabe, S.: On some relations between the harmonic measure and the Lévy measure for a certain class of Markov processes. Math. J. Kyoto Univ. 2, 79-95 (1962).
    • (1962) Math. J. Kyoto Univ. , vol.2 , pp. 79-95
    • Ikeda, N.1    Watanabe, S.2
  • 17
    • 33847275768 scopus 로고    scopus 로고
    • Potential theory of truncated stable processes
    • Kim, P., Song, R.: Potential theory of truncated stable processes. Math. Z. 256, 139-173 (2007).
    • (2007) Math. Z. , vol.256 , pp. 139-173
    • Kim, P.1    Song, R.2
  • 18
    • 62249180786 scopus 로고    scopus 로고
    • Boundary Harnack principle for subordinate Brownian motions
    • Kim, P., Song, R., Vondraček, Z.: Boundary Harnack principle for subordinate Brownian motions. Stoch. Process. Appl. 119, 1601-1631 (2009).
    • (2009) Stoch. Process. Appl. , vol.119 , pp. 1601-1631
    • Kim, P.1    Song, R.2    Vondraček, Z.3
  • 19
    • 0039421352 scopus 로고
    • Harnack inequalities and difference estimates for random walks with infinite range
    • Lawler, G. F., Polaski, T. W.: Harnack inequalities and difference estimates for random walks with infinite range. J. Theor. Probab. 6, 781-802 (1993).
    • (1993) J. Theor. Probab. , vol.6 , pp. 781-802
    • Lawler, G.F.1    Polaski, T.W.2
  • 21
    • 0742271343 scopus 로고    scopus 로고
    • Harnack inequalities for some classes of Markov processes
    • Song, R., Vondraček, Z.: Harnack inequalities for some classes of Markov processes. Math. Z. 246, 177-202 (2004).
    • (2004) Math. Z. , vol.246 , pp. 177-202
    • Song, R.1    Vondraček, Z.2
  • 22
    • 84921655411 scopus 로고    scopus 로고
    • Potential theory of subordinate Brownian motion
    • Lecture Notes in Mathematics, P. Graczyk and A. Stos (Eds.), New York: Springer
    • Song, R., Vondraček, Z.: Potential theory of subordinate Brownian motion. In: Graczyk, P., Stos, A. (eds.) Potential Analysis of Stable Processes and its Extensions. Lecture Notes in Mathematics, vol. 1980, pp. 87-176. Springer, New York (2009).
    • (2009) Potential Analysis of Stable Processes and Its Extensions , vol.1980 , pp. 87-176
    • Song, R.1    Vondraček, Z.2
  • 23
    • 0037917507 scopus 로고    scopus 로고
    • On harmonic measure for Lévy processes
    • Sztonyk, P.: On harmonic measure for Lévy processes. Probab. Math. Stat. 20, 383-390 (2000).
    • (2000) Probab. Math. Stat. , vol.20 , pp. 383-390
    • Sztonyk, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.