메뉴 건너뛰기




Volumn 23, Issue 4, 2010, Pages 476-486

Local matrix learning in clustering and applications for manifold visualization

Author keywords

Data visualization; Dimensionality reduction; Manifold charting; Matrix learning; Neural gas

Indexed keywords

CLUSTERING SCHEME; DATA EMBEDDING; DATA RESOLUTIONS; DATA SETS; DIMENSIONALITY REDUCTION; ELECTRONIC DATA; HIGH-DIMENSIONAL DATA SPACE; LOW DIMENSIONALITY; MATRIX; MATRIX CLUSTERING; MATRIX LEARNING; NEURAL GAS; SPHERICAL SHAPE;

EID: 77950297930     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2009.12.003     Document Type: Article
Times cited : (9)

References (32)
  • 1
    • 77950297979 scopus 로고    scopus 로고
    • Local matrix adaptation in topographic neural maps
    • Technical report IfI-08-07, Clausthal University of Technology
    • Arnonkijpanich, B., Hammer, B., & Hasenfuss, A. (2008). Local matrix adaptation in topographic neural maps. Technical report IfI-08-07. Clausthal University of Technology, Department of Computer Science.
    • (2008) Department of Computer Science
    • Arnonkijpanich, B.1    Hammer, B.2    Hasenfuss, A.3
  • 2
    • 10944268652 scopus 로고    scopus 로고
    • Adaptive second order self-organizing mapping for 2D pattern representation
    • Arnonkijpanich B., Lursinsap C. Adaptive second order self-organizing mapping for 2D pattern representation. IEEE-INNS IJCNN 2004, 775-780.
    • (2004) IEEE-INNS IJCNN , pp. 775-780
    • Arnonkijpanich, B.1    Lursinsap, C.2
  • 3
    • 85153959666 scopus 로고
    • Convergence properties of the k-means algorithm
    • MIT, G. Tesauro, D.S. Touret, zky, T.K. Leen (Eds.)
    • Bottou L., Bengio Y. Convergence properties of the k-means algorithm. NIPS 1994 1995, 585-592. MIT. G. Tesauro, D.S. Touret, zky, T.K. Leen (Eds.).
    • (1995) NIPS 1994 , pp. 585-592
    • Bottou, L.1    Bengio, Y.2
  • 5
    • 0345404393 scopus 로고    scopus 로고
    • Theoretical aspects of the SOM algorithm
    • Cottrell M., Fort J.C., Pagès G. Theoretical aspects of the SOM algorithm. Neurocomputing 1999, 21:119-138.
    • (1999) Neurocomputing , vol.21 , pp. 119-138
    • Cottrell, M.1    Fort, J.C.2    Pagès, G.3
  • 9
    • 0003744820 scopus 로고    scopus 로고
    • The EM algorithm for mixtures of factor analyzers
    • University of Toronto
    • Gharamani, Z., & Hinton, G. (1996). The EM algorithm for mixtures of factor analyzers. Technical report CRG-TR-96-1. University of Toronto.
    • (1996) Technical report CRG-TR-96-1
    • Gharamani, Z.1    Hinton, G.2
  • 11
    • 0035506768 scopus 로고    scopus 로고
    • Self-organizing maps, vector quantization, and mixture modeling
    • Heskes T. Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 2001, 12:1299-1305.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , pp. 1299-1305
    • Heskes, T.1
  • 12
    • 0348139702 scopus 로고    scopus 로고
    • Dimension reduction by local principal component analysis
    • Kambhatla A., Leen T.K. Dimension reduction by local principal component analysis. Neural Computation 1997, 9:1493-1516.
    • (1997) Neural Computation , vol.9 , pp. 1493-1516
    • Kambhatla, A.1    Leen, T.K.2
  • 14
    • 0000761101 scopus 로고    scopus 로고
    • Self-organized formation of various invariant-feature filters in the Adaptive-Subspace SOM
    • Kohonen T., Kaski S., Lappalainen H. Self-organized formation of various invariant-feature filters in the Adaptive-Subspace SOM. Neural Computation 1997, 9(6):1321-1344.
    • (1997) Neural Computation , vol.9 , Issue.6 , pp. 1321-1344
    • Kohonen, T.1    Kaski, S.2    Lappalainen, H.3
  • 17
    • 0027632248 scopus 로고
    • 'Neural gas' network for vector quantization and its application to time series prediction
    • Martinetz T., Berkovich S., Schulten K. 'Neural gas' network for vector quantization and its application to time series prediction. IEEE TNN 1993, 4(4):558-569.
    • (1993) IEEE TNN , vol.4 , Issue.4 , pp. 558-569
    • Martinetz, T.1    Berkovich, S.2    Schulten, K.3
  • 19
    • 33746111259 scopus 로고    scopus 로고
    • Learning an optimaldistance metric in a linguistic vector space
    • Mochihashi D., Kikui G., Kita K. Learning an optimaldistance metric in a linguistic vector space. Systems and Computers in Japan 2006, 37(9):12-21.
    • (2006) Systems and Computers in Japan , vol.37 , Issue.9 , pp. 12-21
    • Mochihashi, D.1    Kikui, G.2    Kita, K.3
  • 20
    • 8644270422 scopus 로고    scopus 로고
    • An extension of neural gas to local PCA
    • Möller R., Hoffmann H. An extension of neural gas to local PCA. Neurocomputing 2004, 62:305-326.
    • (2004) Neurocomputing , vol.62 , pp. 305-326
    • Möller, R.1    Hoffmann, H.2
  • 21
    • 9144260753 scopus 로고    scopus 로고
    • Improved learning of Riemannian metrics for exploratory analysis
    • Peltonen J., Klami A., Kaski S. Improved learning of Riemannian metrics for exploratory analysis. Neural Networks 2004, 17:1087-1100.
    • (2004) Neural Networks , vol.17 , pp. 1087-1100
    • Peltonen, J.1    Klami, A.2    Kaski, S.3
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(5500):2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 25
    • 33745899587 scopus 로고    scopus 로고
    • Growing hierarchical principal components analysis self-organizing map
    • Springer, Advances in neural networks - ISNN 2006
    • Stones L.Z., Zhang Y., Jian C.L. Growing hierarchical principal components analysis self-organizing map. LNCS 2006, Vol. 3971:701-706. Springer.
    • (2006) LNCS , vol.3971 , pp. 701-706
    • Stones, L.Z.1    Zhang, Y.2    Jian, C.L.3
  • 26
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • 5500
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2323. 5500.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 28
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analyzers
    • Tipping M.E., Bishop C.M. Mixtures of probabilistic principal component analyzers. Neural Computation 1999, 11:443-482.
    • (1999) Neural Computation , vol.11 , pp. 443-482
    • Tipping, M.E.1    Bishop, C.M.2
  • 30
    • 77950299827 scopus 로고    scopus 로고
    • Dimensionality reduction: A comparative review. published online
    • van der Maaten, L. J. P., Postma, E. O., & van den Herik, H. J. (2008). Dimensionality reduction: A comparative review. published online, http://www.cs.unimaas.nl/l.vandermaaten/dr/DR_draft.pdf.
    • (2008)
    • van der Maaten, L.J.P.1    Postma, E.O.2    van den Herik, H.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.