-
1
-
-
0013403638
-
An approximate solution technique depending on an artificial parameter: A special example
-
He J.H. An approximate solution technique depending on an artificial parameter: A special example. Commun. Nonlinear Sci. Numer. Simul. 3 (1998) 92-97
-
(1998)
Commun. Nonlinear Sci. Numer. Simul.
, vol.3
, pp. 92-97
-
-
He, J.H.1
-
2
-
-
37549033511
-
′ / G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics
-
′ / G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372 (2008) 417-423
-
(2008)
Phys. Lett. A
, vol.372
, pp. 417-423
-
-
Wang, M.1
Li, X.2
Zhang, J.3
-
3
-
-
0007140364
-
A new approach to nonlinear partial differential equations
-
He J.H. A new approach to nonlinear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 2 (1997) 230-235
-
(1997)
Commun. Nonlinear Sci. Numer. Simul.
, vol.2
, pp. 230-235
-
-
He, J.H.1
-
4
-
-
3943089967
-
Homotopy analysis method-a kind of nonlinear analytical technique not depending on small parameters
-
Liao S.J. Homotopy analysis method-a kind of nonlinear analytical technique not depending on small parameters. Shanghai J. Mech. 18 (1997) 196-200
-
(1997)
Shanghai J. Mech.
, vol.18
, pp. 196-200
-
-
Liao, S.J.1
-
5
-
-
13444309466
-
Simplest equation method to look for exact solutions of nonlinear differential equations
-
Kudryashov N.A. Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24 (2005) 1217-1231
-
(2005)
Chaos Solitons Fractals
, vol.24
, pp. 1217-1231
-
-
Kudryashov, N.A.1
-
6
-
-
0042884163
-
The first-integral method to study the Burgers-Korteweg-de Vries equation
-
Feng Z.S. The first-integral method to study the Burgers-Korteweg-de Vries equation. J. Phys. A: Math. Gen. 35 (2002) 343-349
-
(2002)
J. Phys. A: Math. Gen.
, vol.35
, pp. 343-349
-
-
Feng, Z.S.1
-
7
-
-
50949112266
-
An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering
-
He J.H. An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering. Int. J. Mod. Phys. B. 22 (2008) 3487-3578
-
(2008)
Int. J. Mod. Phys. B.
, vol.22
, pp. 3487-3578
-
-
He, J.H.1
-
8
-
-
77949917236
-
The three-wave method for nonlinear evolution equations
-
Dai Z.D., Wang C.J., Lin S.Q., Li D.L., and Mu G. The three-wave method for nonlinear evolution equations. Nonl. Sci. Lett. A 1 (2010) 77-82
-
(2010)
Nonl. Sci. Lett. A
, vol.1
, pp. 77-82
-
-
Dai, Z.D.1
Wang, C.J.2
Lin, S.Q.3
Li, D.L.4
Mu, G.5
-
9
-
-
74449084990
-
The variational iteration method which should be followed
-
He J.H., Wu G.C., and Austin F. The variational iteration method which should be followed. Nonl. Sci. Lett. A 1 (2010) 1-30
-
(2010)
Nonl. Sci. Lett. A
, vol.1
, pp. 1-30
-
-
He, J.H.1
Wu, G.C.2
Austin, F.3
-
10
-
-
33745177020
-
Exp-function method for nonlinear wave equations
-
He J.H., and Wu X.H. Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30 (2006) 700-708
-
(2006)
Chaos Solitons Fractals
, vol.30
, pp. 700-708
-
-
He, J.H.1
Wu, X.H.2
-
11
-
-
34548577315
-
Exp-function method for the hybrid-lattice system
-
Zhu S.D. Exp-function method for the hybrid-lattice system. Int. J. Nonlinear Sci. Numer. Simul. 8 (2007) 461-464
-
(2007)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.8
, pp. 461-464
-
-
Zhu, S.D.1
-
12
-
-
34247350849
-
Application of Exp-function method to a KdV equation with variable coefficients
-
Zhang S. Application of Exp-function method to a KdV equation with variable coefficients. Phys. Lett. A 365 (2007) 448-453
-
(2007)
Phys. Lett. A
, vol.365
, pp. 448-453
-
-
Zhang, S.1
-
13
-
-
68649119352
-
Application of He's Exp-function method to the stochastic mKdV equation
-
Dai C.Q., and Zhang J.F. Application of He's Exp-function method to the stochastic mKdV equation. Int. J. Nonlinear Sci. Numer. Simul. 10 (2009) 675-680
-
(2009)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.10
, pp. 675-680
-
-
Dai, C.Q.1
Zhang, J.F.2
-
14
-
-
55549089262
-
Exact and explicit solutions to the (3+1)-dimensional Jimbo-Miwa equation via the Exp-function method
-
Öziş T., and Aslan İ. Exact and explicit solutions to the (3+1)-dimensional Jimbo-Miwa equation via the Exp-function method. Phys. Lett..A 372 (2008) 7011-7015
-
(2008)
Phys. Lett..A
, vol.372
, pp. 7011-7015
-
-
Öziş, T.1
Aslan, I.2
-
15
-
-
77957252477
-
Generalized solitary and periodic wave solutions to a (2 + 1)-dimensional Zakharov-Kuznetsov equation
-
10.1016/j.amc.2009.05.037
-
Aslan İ. Generalized solitary and periodic wave solutions to a (2 + 1)-dimensional Zakharov-Kuznetsov equation. Appl. Math. Comput. (2009) 10.1016/j.amc.2009.05.037
-
(2009)
Appl. Math. Comput.
-
-
Aslan, I.1
-
16
-
-
74249103258
-
Application of Exp-function method for a system of three component-Schrödinger equations
-
Yomba E. Application of Exp-function method for a system of three component-Schrödinger equations. Phys. Lett. A 373 (2009) 4001-4011
-
(2009)
Phys. Lett. A
, vol.373
, pp. 4001-4011
-
-
Yomba, E.1
-
17
-
-
58449099032
-
The Exp-function method and n-soliton solutions
-
Marinakis V. The Exp-function method and n-soliton solutions. Z. Naturforsch. 63a (2008) 653-656
-
(2008)
Z. Naturforsch.
, vol.63 a
, pp. 653-656
-
-
Marinakis, V.1
-
18
-
-
67649482338
-
Exp-function method for N-soliton solutions of nonlinear evolution equations in mathematical physics
-
Zhang S., and Zhang H.Q. Exp-function method for N-soliton solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 373 (2009) 2501-2505
-
(2009)
Phys. Lett. A
, vol.373
, pp. 2501-2505
-
-
Zhang, S.1
Zhang, H.Q.2
-
19
-
-
77950189796
-
Exp-function method: Solitary, periodic and rational wave solutions of nonlinear evolution equations
-
Zhang S. Exp-function method: Solitary, periodic and rational wave solutions of nonlinear evolution equations. Nonl. Sci. Lett. A 1 (2010) 143-146
-
(2010)
Nonl. Sci. Lett. A
, vol.1
, pp. 143-146
-
-
Zhang, S.1
-
22
-
-
84956211082
-
Holomorphic bundles over algebraic curves and non-linear equation
-
Krichever I.M., and Novikov S.P. Holomorphic bundles over algebraic curves and non-linear equation. Russian Math. Surveys 35 (1980) 53-79
-
(1980)
Russian Math. Surveys
, vol.35
, pp. 53-79
-
-
Krichever, I.M.1
Novikov, S.P.2
-
23
-
-
36749110322
-
The Painleve property for partial differential equations
-
Weiss J. The Painleve property for partial differential equations. J. Math. Phys. 24 (1983) 1405-1413
-
(1983)
J. Math. Phys.
, vol.24
, pp. 1405-1413
-
-
Weiss, J.1
|