메뉴 건너뛰기




Volumn 41, Issue 1, 2009, Pages

Comparison of classification methods for detecting associations between SNPs and chick mortality

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTIFICIAL NEURAL NETWORK; BAYESIAN ANALYSIS; COMPARATIVE STUDY; FORECASTING METHOD; GENETIC MARKER; GENOMICS; MORTALITY; POULTRY; YOUNG POPULATION;

EID: 77949792033     PISSN: 0999193X     EISSN: 12979686     Source Type: Journal    
DOI: 10.1186/1297-9686-41-18     Document Type: Article
Times cited : (18)

References (38)
  • 1
    • 33947587287 scopus 로고    scopus 로고
    • Looking for a bit of co-action?
    • 17329556
    • Looking for a bit of co-action? JD Blakey, Thorax 2007 62 196 197 17329556
    • (2007) Thorax , vol.62 , pp. 196-197
    • Blakey, J.D.1
  • 2
    • 0036250060 scopus 로고    scopus 로고
    • The use of molecular genetics in the improvement of agricultural populations
    • 11823788
    • The use of molecular genetics in the improvement of agricultural populations. JCM Dekkers F Hospital, Nat Rev Genet 2002 3 22 32 11823788
    • (2002) Nat Rev Genet , vol.3 , pp. 22-32
    • Dekkers, J.C.M.1    Hospital, F.2
  • 4
    • 0034527775 scopus 로고    scopus 로고
    • Selecting SNPs in two-stage analysis of disease association data: A model-free approach
    • 11281279
    • Selecting SNPs in two-stage analysis of disease association data: a model-free approach. J Hoh A Wille R Zee S Cheng R Reynolds K Lindpaintner J Ott, Ann Hum Genet 2000 64 413 417 11281279
    • (2000) Ann Hum Genet , vol.64 , pp. 413-417
    • Hoh, J.1    Wille, A.2    Zee, R.3    Cheng, S.4    Reynolds, R.5    Lindpaintner, K.6    Ott, J.7
  • 5
    • 0036137030 scopus 로고    scopus 로고
    • A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: Application to HLA in type 1 diabetes
    • 11719900
    • A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. HJ Cordell DG Clayton, Am J Hum Genet 2002 70 124 141 11719900
    • (2002) Am J Hum Genet , vol.70 , pp. 124-141
    • Cordell, H.J.1    Clayton, D.G.2
  • 7
    • 33746424900 scopus 로고    scopus 로고
    • Genomic-assisted prediction of genetic value with semiparametric procedures
    • 16648593
    • Genomic-assisted prediction of genetic value with semiparametric procedures. D Gianola RL Fernando A Stella, Genetics 2006 173 1761 1776 16648593
    • (2006) Genetics , vol.173 , pp. 1761-1776
    • Gianola, D.1    Fernando, R.L.2    Stella, A.3
  • 8
    • 45849117254 scopus 로고    scopus 로고
    • Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits
    • 18430950
    • Reproducing kernel Hilbert spaces regression methods for genomic assisted prediction of quantitative traits. D Gianola JBCHM van Kaam, Genetics 2008 178 2289 2303 18430950
    • (2008) Genetics , vol.178 , pp. 2289-2303
    • Gianola, D.1    Van Kaam Jbchm2
  • 10
    • 16844366938 scopus 로고    scopus 로고
    • Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia
    • 15778708
    • Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. P Sebastiani MF Ramoni V Nolan CT Baldwin MH Steinberg, Nat Genet 2005 37 435 440 15778708
    • (2005) Nat Genet , vol.37 , pp. 435-440
    • Sebastiani, P.1    Ramoni, M.F.2    Nolan, V.3    Baldwin, C.T.4    Steinberg, M.H.5
  • 12
    • 7244248755 scopus 로고    scopus 로고
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression
    • 15087314
    • A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. T Li C Zhang M Ogihara, Bioinformatics 2004 20 2429 2437 15087314
    • (2004) Bioinformatics , vol.20 , pp. 2429-2437
    • Li, T.1    Zhang, C.2    Ogihara, M.3
  • 13
    • 36849010721 scopus 로고    scopus 로고
    • Machine learning classification procedure for selecting SNPs in genomic selection: Application to early mortality in broilers
    • 18076475
    • Machine learning classification procedure for selecting SNPs in genomic selection: application to early mortality in broilers. N Long D Gianola GJM Rosa KA Weigel S Avendano, J Anim Breed Genet 2007 124 377 389 18076475
    • (2007) J Anim Breed Genet , vol.124 , pp. 377-389
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Avendano, S.5
  • 14
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Wrappers for feature subset selection. R Kohavi GH John, Artificial Intelligence 1997 97 273 324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 17
    • 0002419948 scopus 로고    scopus 로고
    • Beyond independence: Conditions for the optimality of the simple Bayesian classifier
    • Beyond independence: conditions for the optimality of the simple Bayesian classifier. P Domingos MJ Pazzani, International Conference on Machine Learning 1996 105 112
    • (1996) International Conference on Machine Learning , pp. 105-112
    • Domingos, P.1    Pazzani, M.J.2
  • 20
    • 4043059734 scopus 로고    scopus 로고
    • A Bayesian network classification methodology for gene expression data
    • 15579233
    • A Bayesian network classification methodology for gene expression data. P Helman R Veroff SR Atlas C Willman, J Comput Biol 2004 11 581 615 15579233
    • (2004) J Comput Biol , vol.11 , pp. 581-615
    • Helman, P.1    Veroff, R.2    Atlas, S.R.3    Willman, C.4
  • 21
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • 11108481
    • Using Bayesian networks to analyze expression data. N Friedman M Linial I Nachman D Pe'er, J Comput Biol 2000 7 601 620 11108481
    • (2000) J Comput Biol , vol.7 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'Er, D.4
  • 22
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • A Bayesian method for the induction of probabilistic networks from data. GF Cooper E Herskovits, Machine Learning 1992 9 309 347
    • (1992) Machine Learning , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 24
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Understanding neural networks as statistical tools. B Warner M Misra, Am Stat 1996 50 284 293
    • (1996) Am Stat , vol.50 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 26
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: A practical and powerful approach to multiple testing
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing. Y Benjamini Y Hochberg, J R Stat Soc (B) 1995 57 289 300
    • (1995) J R Stat Soc (B) , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 27
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions A review of practical Bayesian methods for supervised neural networks
    • Probable networks and plausible predictions A review of practical Bayesian methods for supervised neural networks. DJC MacKay, Network: Computation in Neural Systems 1995 6 469 505
    • (1995) Network: Computation in Neural Systems , vol.6 , pp. 469-505
    • MacKay, D.J.C.1
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Estimating the dimension of a model. G Schwarz, Ann Stat 1978 6 461 464
    • (1978) Ann Stat , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 29
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • 16924916
    • Modeling by shortest data description. J Rissanen, Automatica 1978 14 465 471 16924916
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 31
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Gene selection for cancer classification using support vector machines. I Guyon J Weston S Barnhill V Vapnik, Machine Learning 2002 46 389 422
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 32
  • 33
    • 25444453244 scopus 로고    scopus 로고
    • Screening large-scale association study data: Exploiting interactions using random forests
    • 15059244
    • Screening large-scale association study data: exploiting interactions using random forests. K Lunetta LB Hayward J Segal P Van Eerdewegh, BMC Genet 2004 5 5 32 15059244
    • (2004) BMC Genet , vol.5 , pp. 5-32
    • Lunetta, K.1    Hayward, L.B.2    Segal, J.3    Van Eerdewegh, P.4
  • 35
    • 58749100318 scopus 로고    scopus 로고
    • A marker-assisted assessment of genotype by environment interaction: SNP-mortality association in broilers in two hygiene environments
    • 18765852
    • A marker-assisted assessment of genotype by environment interaction: SNP-mortality association in broilers in two hygiene environments. N Long D Gianola GJM Rosa KA Weigel S Avendano, J Anim Sci 2008 86 3358 3366 18765852
    • (2008) J Anim Sci , vol.86 , pp. 3358-3366
    • Long, N.1    Gianola, D.2    Rosa, G.J.M.3    Weigel, K.A.4    Avendano, S.5
  • 36
    • 0037274690 scopus 로고    scopus 로고
    • On marker-assisted prediction of genetic value: Beyond the ridge
    • 12586721
    • On marker-assisted prediction of genetic value: Beyond the ridge. D Gianola M Perez-Enciso MA Toro, Genetics 2003 163 347 365 12586721
    • (2003) Genetics , vol.163 , pp. 347-365
    • Gianola, D.1    Perez-Enciso, M.2    Toro, M.A.3
  • 37
    • 0035045051 scopus 로고    scopus 로고
    • Prediction of total genetic value using genome-wide dense marker maps
    • 11290733
    • Prediction of total genetic value using genome-wide dense marker maps. THE Meuwissen BJ Hayes ME Goddard, Genetics 2001 157 1819 1829 11290733
    • (2001) Genetics , vol.157 , pp. 1819-1829
    • Meuwissen, T.H.E.1    Hayes, B.J.2    Goddard, M.E.3
  • 38
    • 0037297614 scopus 로고    scopus 로고
    • Estimating polygenic effects using markers of the entire genome
    • 12618414
    • Estimating polygenic effects using markers of the entire genome. S Xu, Genetics 2003 163 789 801 12618414
    • (2003) Genetics , vol.163 , pp. 789-801
    • Xu, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.