메뉴 건너뛰기




Volumn 81, Issue 3, 2010, Pages

Structure and dynamics of topological defects in a glassy liquid on a negatively curved manifold

Author keywords

[No Author keywords available]

Indexed keywords

ATOMIC CONFIGURATION; ATOMIC LIQUIDS; CONTINUUM THEORY; DISCLINATIONS; GLASSY LIQUIDS; HYPERBOLIC PLANE; LOW-TEMPERATURE REGIME; MOLECULAR DYNAMICS SIMULATIONS; STRUCTURE AND DYNAMICS; TOPOLOGICAL DEFECT;

EID: 77949762842     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.81.031504     Document Type: Article
Times cited : (25)

References (28)
  • 5
    • 73649087446 scopus 로고    scopus 로고
    • 10.1080/00018730903043166
    • M. J. Bowick and L. Giomi, Adv. Phys. 58, 449 (2009). 10.1080/00018730903043166
    • (2009) Adv. Phys. , vol.58 , pp. 449
    • Bowick, M.J.1    Giomi, L.2
  • 8
    • 28844477951 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.72.036110
    • A. Travesset, Phys. Rev. E 72, 036110 (2005). 10.1103/PhysRevE.72.036110
    • (2005) Phys. Rev. e , vol.72 , pp. 036110
    • Travesset, A.1
  • 14
    • 0000492511 scopus 로고
    • 10.1103/PhysRevLett.50.982
    • D. R. Nelson, Phys. Rev. Lett. 50, 982 (1983). 10.1103/PhysRevLett.50.982
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 982
    • Nelson, D.R.1
  • 18
    • 76649121532 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.104.065701
    • F. Sausset and G. Tarjus, Phys. Rev. Lett. 104, 065701 (2010). 10.1103/PhysRevLett.104.065701
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 065701
    • Sausset, F.1    Tarjus, G.2
  • 19
    • 36749077519 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.99.235701
    • C. D. Modes and R. D. Kamien, Phys. Rev. Lett. 99, 235701 (2007). 10.1103/PhysRevLett.99.235701
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 235701
    • Modes, C.D.1    Kamien, R.D.2
  • 20
    • 43049118996 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.77.041125
    • C. D. Modes and R. D. Kamien, Phys. Rev. E 77, 041125 (2008). 10.1103/PhysRevE.77.041125
    • (2008) Phys. Rev. e , vol.77 , pp. 041125
    • Modes, C.D.1    Kamien, R.D.2
  • 24
    • 0033720729 scopus 로고    scopus 로고
    • Symposium on Computational Geometry
    • G. Leibon and D. Letscher, Symposium on Computational Geometry, 2000 (unpublished), p. 341.
    • (2000) , pp. 341
    • Leibon, G.1    Letscher, D.2
  • 25
    • 77949685004 scopus 로고    scopus 로고
    • We have not studied in detail the nature of the ordering in flat space, i.e., whether it takes place through two nearby continuous transitions as in the KTNHY theory or via a weakly first-order transition. + is therefore only an estimate.
    • We have not studied in detail the nature of the ordering in flat space, i.e., whether it takes place through two nearby continuous transitions as in the KTNHY theory or via a weakly first-order transition. + is therefore only an estimate.
  • 26
    • 0002661572 scopus 로고
    • in edited by Domb and J. L. Lebowitz (Academic Press, London
    • D. R. Nelson, in Phase Transitions and Critical Phenomena, edited by, Domb, and, J. L. Lebowitz, (Academic Press, London, 1983), Vol. 7, p. 1.
    • (1983) Phase Transitions and Critical Phenomena , vol.7 , pp. 1
    • Nelson, D.R.1
  • 27
    • 77949702659 scopus 로고    scopus 로고
    • -3, whereas the density of fivefold and sevenfold disclinations is roughly two orders of magnitude bigger.
    • Disclinations with such high charge magnitude have always a nonzero probability to be present at finite temperature, which is given by the Boltzmann factor + |q| k T, as the energy of a free disclination is proportional to its charge magnitude. For the system studied here, in the range of temperatures shown in Fig. and for all curvatures, the total density of disclinations with charge magnitude strictly larger than π / 3 is always less than 5.10 - 3, whereas the density of fivefold and sevenfold disclinations is roughly two orders of magnitude bigger.
  • 28
    • 77949771811 scopus 로고    scopus 로고
    • By using standard hyperbolic trigonometry (see Appendix C in Ref.), one can compute the cell area of any { p,q } tiling and deduce from it the associated density of vertices. A {3,7} crystal of disclinations can only appear if the density of vertices of the { p,q } tiling corresponding to the chosen periodic boundary condition is equal to the density of irreducible disclinations.
    • By using standard hyperbolic trigonometry (see Appendix C in Ref.), one can compute the cell area of any { p, q } tiling and deduce from it the associated density of vertices. A {3,7} crystal of disclinations can only appear if the density of vertices of the { p, q } tiling corresponding to the chosen periodic boundary condition is equal to the density of irreducible disclinations.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.