-
5
-
-
73649087446
-
-
10.1080/00018730903043166
-
M. J. Bowick and L. Giomi, Adv. Phys. 58, 449 (2009). 10.1080/00018730903043166
-
(2009)
Adv. Phys.
, vol.58
, pp. 449
-
-
Bowick, M.J.1
Giomi, L.2
-
6
-
-
4243457247
-
-
10.1103/PhysRevLett.89.185502
-
M. J. Bowick, A. Cacciuto, D. R. Nelson, and A. Travesset, Phys. Rev. Lett. 89, 185502 (2002). 10.1103/PhysRevLett.89.185502
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 185502
-
-
Bowick, M.J.1
Cacciuto, A.2
Nelson, D.R.3
Travesset, A.4
-
7
-
-
33144468742
-
-
10.1103/PhysRevB.73.024115
-
M. J. Bowick, A. Cacciuto, D. R. Nelson, and A. Travesset, Phys. Rev. B 73, 024115 (2006). 10.1103/PhysRevB.73.024115
-
(2006)
Phys. Rev. B
, vol.73
, pp. 024115
-
-
Bowick, M.J.1
Cacciuto, A.2
Nelson, D.R.3
Travesset, A.4
-
8
-
-
28844477951
-
-
10.1103/PhysRevE.72.036110
-
A. Travesset, Phys. Rev. E 72, 036110 (2005). 10.1103/PhysRevE.72.036110
-
(2005)
Phys. Rev. e
, vol.72
, pp. 036110
-
-
Travesset, A.1
-
10
-
-
0242464928
-
-
10.1126/science.1081160
-
A. R. Bausch, M. J. Bowick, A. Cacciuto, A. D. Dinsmore, M. F. Hsu, D. R. Nelson, M. G. Nikolaides, A. Travesset, and D. A. Weitz, Science 299, 1716 (2003). 10.1126/science.1081160
-
(2003)
Science
, vol.299
, pp. 1716
-
-
Bausch, A.R.1
Bowick, M.J.2
Cacciuto, A.3
Dinsmore, A.D.4
Hsu, M.F.5
Nelson, D.R.6
Nikolaides, M.G.7
Travesset, A.8
Weitz, D.A.9
-
11
-
-
29844445216
-
-
10.1021/la0517383
-
T. Einert, P. Lipowsky, J. Schilling, M. J. Bowick, and A. R. Bausch, Langmuir 21, 12076 (2005). 10.1021/la0517383
-
(2005)
Langmuir
, vol.21
, pp. 12076
-
-
Einert, T.1
Lipowsky, P.2
Schilling, J.3
Bowick, M.J.4
Bausch, A.R.5
-
12
-
-
17644384369
-
-
10.1038/nmat1376
-
P. Lipowsky, M. J. Bowick, J. H. Meinke, D. R. Nelson, and A. R. Bausch, Nature Mater. 4, 407 (2005). 10.1038/nmat1376
-
(2005)
Nature Mater.
, vol.4
, pp. 407
-
-
Lipowsky, P.1
Bowick, M.J.2
Meinke, J.H.3
Nelson, D.R.4
Bausch, A.R.5
-
14
-
-
0000492511
-
-
10.1103/PhysRevLett.50.982
-
D. R. Nelson, Phys. Rev. Lett. 50, 982 (1983). 10.1103/PhysRevLett.50.982
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 982
-
-
Nelson, D.R.1
-
16
-
-
29144489063
-
-
10.1088/0953-8984/17/50/R01
-
G. Tarjus, S. A. Kivelson, Z. Nussinov, and P. Viot, J. Phys.: Condens. Matter 17, R1143 (2005). 10.1088/0953-8984/17/50/R01
-
(2005)
J. Phys.: Condens. Matter
, vol.17
, pp. 1143
-
-
Tarjus, G.1
Kivelson, S.A.2
Nussinov, Z.3
Viot, P.4
-
18
-
-
76649121532
-
-
10.1103/PhysRevLett.104.065701
-
F. Sausset and G. Tarjus, Phys. Rev. Lett. 104, 065701 (2010). 10.1103/PhysRevLett.104.065701
-
(2010)
Phys. Rev. Lett.
, vol.104
, pp. 065701
-
-
Sausset, F.1
Tarjus, G.2
-
19
-
-
36749077519
-
-
10.1103/PhysRevLett.99.235701
-
C. D. Modes and R. D. Kamien, Phys. Rev. Lett. 99, 235701 (2007). 10.1103/PhysRevLett.99.235701
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 235701
-
-
Modes, C.D.1
Kamien, R.D.2
-
20
-
-
43049118996
-
-
10.1103/PhysRevE.77.041125
-
C. D. Modes and R. D. Kamien, Phys. Rev. E 77, 041125 (2008). 10.1103/PhysRevE.77.041125
-
(2008)
Phys. Rev. e
, vol.77
, pp. 041125
-
-
Modes, C.D.1
Kamien, R.D.2
-
24
-
-
0033720729
-
-
Symposium on Computational Geometry
-
G. Leibon and D. Letscher, Symposium on Computational Geometry, 2000 (unpublished), p. 341.
-
(2000)
, pp. 341
-
-
Leibon, G.1
Letscher, D.2
-
25
-
-
77949685004
-
-
We have not studied in detail the nature of the ordering in flat space, i.e., whether it takes place through two nearby continuous transitions as in the KTNHY theory or via a weakly first-order transition. + is therefore only an estimate.
-
We have not studied in detail the nature of the ordering in flat space, i.e., whether it takes place through two nearby continuous transitions as in the KTNHY theory or via a weakly first-order transition. + is therefore only an estimate.
-
-
-
-
26
-
-
0002661572
-
-
in edited by Domb and J. L. Lebowitz (Academic Press, London
-
D. R. Nelson, in Phase Transitions and Critical Phenomena, edited by, Domb, and, J. L. Lebowitz, (Academic Press, London, 1983), Vol. 7, p. 1.
-
(1983)
Phase Transitions and Critical Phenomena
, vol.7
, pp. 1
-
-
Nelson, D.R.1
-
27
-
-
77949702659
-
-
-3, whereas the density of fivefold and sevenfold disclinations is roughly two orders of magnitude bigger.
-
Disclinations with such high charge magnitude have always a nonzero probability to be present at finite temperature, which is given by the Boltzmann factor + |q| k T, as the energy of a free disclination is proportional to its charge magnitude. For the system studied here, in the range of temperatures shown in Fig. and for all curvatures, the total density of disclinations with charge magnitude strictly larger than π / 3 is always less than 5.10 - 3, whereas the density of fivefold and sevenfold disclinations is roughly two orders of magnitude bigger.
-
-
-
-
28
-
-
77949771811
-
-
By using standard hyperbolic trigonometry (see Appendix C in Ref.), one can compute the cell area of any { p,q } tiling and deduce from it the associated density of vertices. A {3,7} crystal of disclinations can only appear if the density of vertices of the { p,q } tiling corresponding to the chosen periodic boundary condition is equal to the density of irreducible disclinations.
-
By using standard hyperbolic trigonometry (see Appendix C in Ref.), one can compute the cell area of any { p, q } tiling and deduce from it the associated density of vertices. A {3,7} crystal of disclinations can only appear if the density of vertices of the { p, q } tiling corresponding to the chosen periodic boundary condition is equal to the density of irreducible disclinations.
-
-
-
|