메뉴 건너뛰기




Volumn 79, Issue 3, 2010, Pages

Topological stability of majorana zero modes in superconductor-topological insulator systems

Author keywords

Index theorem; Majorana zero modes; Superconductor topological insulator system; Topological invariants

Indexed keywords


EID: 77949675603     PISSN: 00319015     EISSN: 13474073     Source Type: Journal    
DOI: 10.1143/JPSJ.79.033701     Document Type: Article
Times cited : (41)

References (30)
  • 10
    • 77949675111 scopus 로고    scopus 로고
    • arXiv: 0909.4231
    • I. F. Herbut: arXiv:0909.4231.
    • Herbut, I.F.1
  • 11
    • 77949686446 scopus 로고    scopus 로고
    • arXiv: 0910.4906
    • I. F. Herbut: arXiv:0910.4906.
    • Herbut, I.F.1
  • 17
    • 77949747367 scopus 로고    scopus 로고
    • Note
    • In the Fu-Kane model, they have used γ1 = σ1 ⊗ σ3, γ2 = σ2 ⊗ σ3, γ3 = 1 ⊗ σ1, and γ3 = 1 ⊗ σ2, where in the notation of a ⊗ b, a and b denote the spin and particle-hole spaces, respectively. The particle- hole transformation C is defined as C = σ2 ⊗ σ2K, where K denotes the complex conjugation operator. In the Teo-Kane model, γ j = σj ⊗ σ3 ⊗ σ3 ( j = 1; 2; 3), γ4 = 1 ⊗ σ1 ⊗ 1, γ5 = 1 ⊗ σ2 ⊗1, and γ6 = 1 ⊗ σ3 ⊗ σ1, where in a b c, a, b, and c denote, respectively, the spin, particle-hole, and orbital spaces. For this model, C = σ2 ⊗ σ2 ⊗ 1K.
  • 21
    • 77949730635 scopus 로고    scopus 로고
    • arXiv: 0901.2686
    • A. Kitaev: arXiv:0901.2686.
    • Kitaev, A.1
  • 28
    • 77949737734 scopus 로고    scopus 로고
    • 4
    • In the Fu-Kane model, β = -iγ3γ4.
  • 29
    • 77949725381 scopus 로고    scopus 로고
    • If the matrix β has chiral symmetry, ℋ′ vanishes in general. This alternatively indicates the stability of the index (9)
    • If the matrix β has chiral symmetry, ℋ′ vanishes in general. This alternatively indicates the stability of the index (9).
  • 30
    • 77949718583 scopus 로고    scopus 로고
    • c C' = i', where 'T = (T; ηT). The factor -i is for notational convenience
    • This condition is represented as 'c C' = i', where 'T = (T; ηT). The factor -i is for notational convenience.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.