-
2
-
-
34447290241
-
Local existence of classical solutions of the system using weighted sobolev spaces of fractional order
-
Brauer U., Karp L.: Local existence of classical solutions of the system using weighted sobolev spaces of fractional order. Les Comptes l'Académie des Sciences / Série Math. 345, 49-54 (2007).
-
(2007)
Les Comptes L'académie Des Sciences / Série Math.
, vol.345
, pp. 49-54
-
-
Brauer, U.1
Karp, L.2
-
3
-
-
21844500850
-
The cosmic no-hair theorem and the nonlinear stability of homogeneous Newtonian cosmological models
-
Brauer U., Rendall A., Reula O.: The cosmic no-hair theorem and the nonlinear stability of homogeneous Newtonian cosmological models. Class. Quant. Grav. 11, 2283-2296 (1994).
-
(1994)
Class. Quant. Grav.
, vol.11
, pp. 2283-2296
-
-
Brauer, U.1
Rendall, A.2
Reula, O.3
-
4
-
-
0020167834
-
Problems with different time scales for nonlinear partial differential equations
-
Browning G., Kreiss H. O.: Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42, 704-718 (1982).
-
(1982)
SIAM J. Appl. Math.
, vol.42
, pp. 704-718
-
-
Browning, G.1
Kreiss, H.O.2
-
5
-
-
34249962606
-
Post-Newtonian approximation of the relativistic theory of gravitation on a cosmological background
-
Chugreev Y. V.: Post-Newtonian approximation of the relativistic theory of gravitation on a cosmological background. Theor. Math. Phys. 82, 328-333 (1990).
-
(1990)
Theor. Math. Phys.
, vol.82
, pp. 328-333
-
-
Chugreev, Y.V.1
-
7
-
-
0001670611
-
Averaging of a locally inhomogeneous realistic universe
-
Futamase T.: Averaging of a locally inhomogeneous realistic universe. Phys. Rev. D 53, 681-689 (1996).
-
(1996)
Phys. Rev. D
, vol.53
, pp. 681-689
-
-
Futamase, T.1
-
8
-
-
33947171917
-
-
Living Rev. Relativity, available at
-
Futamase, T., Itoh, Y.: The Post-Newtonian Approximation for Relativistic Compact Binaries. Living Rev. Relativity 10 (2007), 2, available at http://www. livingreviews. org/lrr-2007-2.
-
(2007)
The Post-Newtonian Approximation for Relativistic Compact Binaries
, vol.10
, Issue.2
-
-
Futamase, T.1
Itoh, Y.2
-
9
-
-
33646519450
-
Newtonian versus relativistic nonlinear cosmology
-
Hwang J., Noh H.: Newtonian versus relativistic nonlinear cosmology. Gen. Rel. Grav. 38, 703-710 (2006).
-
(2006)
Gen. Rel. Grav.
, vol.38
, pp. 703-710
-
-
Hwang, J.1
Noh, H.2
-
10
-
-
43049134479
-
Cosmological nonlinear hydrodynamics with post-Newtonian corrections
-
Hwang J., Noh H., Puetzfeld D.: Cosmological nonlinear hydrodynamics with post-Newtonian corrections. JCAP 3, 10 (2008).
-
(2008)
Jcap
, vol.3
, pp. 10
-
-
Hwang, J.1
Noh, H.2
Puetzfeld, D.3
-
11
-
-
21844489561
-
On the Existence of rotating stars in general relativity
-
Heilig U.: On the Existence of rotating stars in general relativity. Commun. Math. Phys. 166, 457-493 (1995).
-
(1995)
Commun. Math. Phys.
, vol.166
, pp. 457-493
-
-
Heilig, U.1
-
12
-
-
0032327216
-
Fast and slow solutions in general relativity: The initialization procedure
-
Iriondo M. S., Leguizamón E. O., Reula O. A.: Fast and slow solutions in general relativity: the initialization procedure. J. Math. Phys. 39, 1555-1565 (1998).
-
(1998)
J. Math. Phys.
, vol.39
, pp. 1555-1565
-
-
Iriondo, M.S.1
Leguizamón, E.O.2
Reula, O.A.3
-
13
-
-
29144457310
-
Can the acceleration of our universe be explained by the effects of inhomogeneities?
-
Ishibashi A., Wald R. M.: Can the acceleration of our universe be explained by the effects of inhomogeneities?. Class. Quant. Grav. 23, 235-250 (2006).
-
(2006)
Class. Quant. Grav.
, vol.23
, pp. 235-250
-
-
Ishibashi, A.1
Wald, R.M.2
-
14
-
-
84990557419
-
Compressible and incompressible fluids
-
Klainerman S., Majda A.: Compressible and incompressible fluids. Comm. Pure Appl. Math. 35, 629-651 (1982).
-
(1982)
Comm. Pure Appl. Math.
, vol.35
, pp. 629-651
-
-
Klainerman, S.1
Majda, A.2
-
15
-
-
84980143584
-
Problems with different time scales for partial differential equations
-
Kreiss H. O.: Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33, 399-439 (1980).
-
(1980)
Comm. Pure Appl. Math.
, vol.33
, pp. 399-439
-
-
Kreiss, H.O.1
-
16
-
-
84971960661
-
Problems with different time scales
-
Kreiss H. O.: Problems with different time scales. Acta Numerical 1, 101-139 (1991).
-
(1991)
Acta Numerical
, vol.1
, pp. 101-139
-
-
Kreiss, H.O.1
-
17
-
-
0001673978
-
Covariant Newtonian limit of Lorentz space-times
-
Künzle H. P.: Covariant Newtonian limit of Lorentz space-times. Gen. Rel. Grav. 7, 445-457 (1976).
-
(1976)
Gen. Rel. Grav.
, vol.7
, pp. 445-457
-
-
Künzle, H.P.1
-
18
-
-
21244491496
-
A convergent post-Newtonian approximation for the constraints in general relativity
-
Lottermoser M.: A convergent post-Newtonian approximation for the constraints in general relativity. Ann. Inst. Henri Poincaré 57, 279-317 (1992).
-
(1992)
Ann. Inst. Henri Poincaré
, vol.57
, pp. 279-317
-
-
Lottermoser, M.1
-
19
-
-
0000426891
-
Post-Newtonian cosmological dynamics in Lagrangian coordinates
-
Matarrese S., Terranova D.: Post-Newtonian cosmological dynamics in Lagrangian coordinates. Mon. Not. Roy. Astron. Soc. 283, 400-418 (1996).
-
(1996)
Mon. Not. Roy. Astron. Soc.
, vol.283
, pp. 400-418
-
-
Matarrese, S.1
Terranova, D.2
-
20
-
-
34848849454
-
The Newtonian limit for perfect fluids
-
Oliynyk T. A.: The Newtonian limit for perfect fluids. Commun. Math. Phys. 276, 131-188 (2007).
-
(2007)
Commun. Math. Phys.
, vol.276
, pp. 131-188
-
-
Oliynyk, T.A.1
-
21
-
-
67349159148
-
Post-Newtonian expansions for perfect fluids
-
Oliynyk T. A.: Post-Newtonian expansions for perfect fluids. Commun. Math. Phys. 288, 847-886 (2009).
-
(2009)
Commun. Math. Phys.
, vol.288
, pp. 847-886
-
-
Oliynyk, T.A.1
-
23
-
-
0000020905
-
On the definition of post-Newtonian approximations
-
Rendall A. D.: On the definition of post-Newtonian approximations. Proc. R. Soc. Lond. A 438, 341-360 (1992).
-
(1992)
Proc. R. Soc. Lond. A
, vol.438
, pp. 341-360
-
-
Rendall, A.D.1
-
24
-
-
21344498199
-
The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system
-
Rendall A. D.: The Newtonian limit for asymptotically flat solutions of the Vlasov-Einstein system. Commun. Math. Phys. 163, 89-112 (1994).
-
(1994)
Commun. Math. Phys.
, vol.163
, pp. 89-112
-
-
Rendall, A.D.1
-
26
-
-
0040620902
-
Symmetric hyperbolic systems with a large parameter
-
Schochet S.: Symmetric hyperbolic systems with a large parameter. Comm. Part. Diff. Eqs. 11, 1627-1651 (1986).
-
(1986)
Comm. Part. Diff. Eqs.
, vol.11
, pp. 1627-1651
-
-
Schochet, S.1
-
27
-
-
0001785854
-
Asymptotics for symmetric hyperbolic systems with a large parameter
-
Schochet S.: Asymptotics for symmetric hyperbolic systems with a large parameter. J. Diff. Eqs. 75, 1-27 (1988).
-
(1988)
J. Diff. Eqs.
, vol.75
, pp. 1-27
-
-
Schochet, S.1
-
28
-
-
0002617221
-
Post-Newtonian equations of motion in the flat universe
-
Shibata M., Asada H.: Post-Newtonian equations of motion in the flat universe. Prog. Theor. Phys. 94, 11-31 (1995).
-
(1995)
Prog. Theor. Phys.
, vol.94
, pp. 11-31
-
-
Shibata, M.1
Asada, H.2
-
29
-
-
0042916599
-
Post-Newtonian Lagrangian perturbation approach to the large-scale structure formation
-
Takada M., Futamase T.: Post-Newtonian Lagrangian perturbation approach to the large-scale structure formation. Mon. Not. R. Astron. Soc. 306, 64-88 (1999).
-
(1999)
Mon. Not. R. Astron. Soc.
, vol.306
, pp. 64-88
-
-
Takada, M.1
Futamase, T.2
|