메뉴 건너뛰기




Volumn , Issue , 2009, Pages 101-106

Probabilistic neural network for breast biopsy classification

Author keywords

[No Author keywords available]

Indexed keywords

BREAST BIOPSIES; BREAST TUMOR; CELL NUCLEUS; DATA SETS; FINE-NEEDLE ASPIRATIONS; IMAGE ANALYSIS TECHNIQUES; INPUT FEATURES; INPUT LAYERS; PROBABILISTIC NEURAL NETWORKS; UNIVERSITY OF WISCONSIN;

EID: 77949628729     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/DeSE.2009.31     Document Type: Conference Paper
Times cited : (11)

References (25)
  • 3
    • 85007758538 scopus 로고    scopus 로고
    • ABC of Breast Diseases, Breast Cancer-Epidemiology, Risk Factors, and Genetics
    • September
    • K. McPherson, C. M. Steel, and J. M. Dixon, ABC of Breast Diseases, Breast Cancer-Epidemiology, Risk Factors, and Genetics", BMJ, Vol. 321 9, pp. 624-628, September, 2000.
    • (2000) BMJ , vol.321 , Issue.9 , pp. 624-628
    • McPherson, K.1    Steel, C.M.2    Dixon, J.M.3
  • 4
    • 33947653184 scopus 로고    scopus 로고
    • Implementing Automated Diagnostic Systems for Breast Cancer Detection
    • E. D. Ubeyli, "Implementing Automated Diagnostic Systems for Breast Cancer Detection," Expert Systems with Applications, Vol. 33, pp. 1054-1062, 2007.
    • (2007) Expert Systems with Applications , vol.33 , pp. 1054-1062
    • Ubeyli, E.D.1
  • 5
    • 0036127473 scopus 로고    scopus 로고
    • Input Feature Selection for Classification Problems
    • N. Kwak, and C. H. Choi, "Input Feature Selection for Classification Problems", IEEE Transactions on Neural Networks, 13(1), 143-159, 2002.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 6
    • 27744513132 scopus 로고    scopus 로고
    • Feature Extraction from Doppler Ultrasound Signals for Automated Diagnostic Systems
    • E. D. Ubeyli and I. Guler, "Feature Extraction from Doppler Ultrasound Signals for Automated Diagnostic Systems", Computers in Biology and Medicine, 35(9), 735-764, 2005.
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.9 , pp. 735-764
    • Ubeyli, E.D.1    Guler, I.2
  • 7
    • 33947492207 scopus 로고    scopus 로고
    • Breast Cancer Detection from FNA using SVM with Different Parameter Tuning Systems and SOM-RBF Classifier
    • Mu Tingting and A. K. Nandi, "Breast Cancer Detection from FNA using SVM with Different Parameter Tuning Systems and SOM-RBF Classifier", Journal of the Franklin Institute, Vol 344,pp. 285-311, 2007.
    • (2007) Journal of the Franklin Institute , vol.344 , pp. 285-311
    • Tingting, M.1    Nandi, A.K.2
  • 8
    • 0028349692 scopus 로고
    • Machine Learning Techniques to Diagnose Breast Cancer from Fine-Needle Aspirates
    • W. H. Wolberg, W.N. Street, and O.L. Mangasarian, "Machine Learning Techniques to Diagnose Breast Cancer from Fine-Needle Aspirates", Cancer Lett. 77 (1994) 163-171.
    • (1994) Cancer Lett , vol.77 , pp. 163-171
    • Wolberg, W.H.1    Street, W.N.2    Mangasarian, O.L.3
  • 9
    • 0028935859 scopus 로고
    • Image Analysis and Machine Learning Applied to Breast Cancer Diagnosis and Prognosis
    • W.H. Wolberg, W.N. Street, and O.L. Mangasarian, "Image Analysis and Machine Learning Applied to Breast Cancer Diagnosis and Prognosis", Anal. Quant. Cytol. Histol.,17 (2) (1995) 77-87.
    • (1995) Anal. Quant. Cytol. Histol , vol.17 , Issue.2 , pp. 77-87
    • Wolberg, W.H.1    Street, W.N.2    Mangasarian, O.L.3
  • 10
    • 0034159928 scopus 로고    scopus 로고
    • Generating Concise and Accurate Classification Rules for Breast Cancer Diagnosis
    • R. Setiono, "Generating Concise and Accurate Classification Rules for Breast Cancer Diagnosis". Artificial Intelligence in Medicine, 18(3), 205-217,2002.
    • (2002) Artificial Intelligence in Medicine , vol.18 , Issue.3 , pp. 205-217
    • Setiono, R.1
  • 11
    • 58349120185 scopus 로고    scopus 로고
    • Breast Mass Classification based on Cytological Patterns using RBFNN and SVM
    • doi:10.1016/j.eswa.2008.06.127
    • T.S. Subashini, V. Ramalingam and S. Palanivel, "Breast Mass Classification based on Cytological Patterns using RBFNN and SVM", Expert Systems with Applications, doi:10.1016/j.eswa.2008.06.127, 2008.
    • (2008) Expert Systems with Applications
    • Subashini, T.S.1    Ramalingam, V.2    Palanivel, S.3
  • 12
    • 59149100964 scopus 로고    scopus 로고
    • Thermography based Breast Cancer Analysis Using Statistical Features and Fuzzy Classification
    • doi:10.1016/j.patcog. 2008.08.007
    • G. Schaefera, M. Závišekb and T. Nakashima, "Thermography based Breast Cancer Analysis Using Statistical Features and Fuzzy Classification", Pattern Recognition,doi:10.1016/j.patcog. 2008.08.007, 2008.
    • (2008) Pattern Recognition
    • Schaefera, G.1    Závišekb, M.2    Nakashima, T.3
  • 13
    • 17844381877 scopus 로고    scopus 로고
    • Breast Cancer Diagnosis System based on Wavelet Analysis and Fuzzy-Neural Networks
    • R. Mousa, Q. Munib and A. Moussa, "Breast Cancer Diagnosis System based on Wavelet Analysis and Fuzzy-Neural Networks", Expert Systems with Applications, 28 (2005) 713-723.
    • (2005) Expert Systems with Applications , vol.28 , pp. 713-723
    • Mousa, R.1    Munib, Q.2    Moussa, A.3
  • 14
    • 0041339769 scopus 로고    scopus 로고
    • Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers
    • J. Abonyi and F. Szeifert, "Supervised Fuzzy Clustering for the Identification of Fuzzy Classifiers. Pattern Recognition Letters, 14(24), 2195-2207, 2003.
    • (2003) Pattern Recognition Letters , vol.14 , Issue.24 , pp. 2195-2207
    • Abonyi, J.1    Szeifert, F.2
  • 16
    • 56349089940 scopus 로고    scopus 로고
    • Support Vector Machines Combined with Feature Selection for Breast cancer Diagnosis
    • M. F. Akay, "Support Vector Machines Combined with Feature Selection for Breast cancer Diagnosis", Expert Systems with Applications, 36 (2009) 3240-3247.
    • (2009) Expert Systems with Applications , vol.36 , pp. 3240-3247
    • Akay, M.F.1
  • 17
    • 34249317613 scopus 로고    scopus 로고
    • Breast Cancer Diagnosis using Least Square Support Vector Machine
    • K. Polat and S. Gunes, "Breast Cancer Diagnosis using Least Square Support Vector Machine. Digital Signal Processing, 17(4), 694-701, 2007.
    • (2007) Digital Signal Processing , vol.17 , Issue.4 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 19
    • 77949613350 scopus 로고    scopus 로고
    • C. Barbǎlatǎ and L. Leuştean, Average Monthly Liquid Flow Forecasting using Neural Networks, draft paper, 2002.
    • C. Barbǎlatǎ and L. Leuştean, "Average Monthly Liquid Flow Forecasting using Neural Networks, draft paper, 2002.
  • 22
    • 0026188751 scopus 로고
    • Learning Vector Quantization for the Probabilistic Neural Network
    • P. Burrascano, "Learning Vector Quantization for the Probabilistic Neural Network", IEEE Transactions on Neural Networks, 2(4): 458-461, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.4 , pp. 458-461
    • Burrascano, P.1
  • 23
    • 0026116468 scopus 로고
    • Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
    • S. Chen, C.F.N. Cowan, and P.M. Grant, "Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks", IEEE Transactions on Neural Networks, 2(2): 302-309, 1991.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 24
    • 77949649862 scopus 로고    scopus 로고
    • An Improved Method in Transient Stability Assessment of a Power System Using Probabilistic Neural Network
    • N. I. A. Wahab, A. Mohamed and A. Hussain, "An Improved Method in Transient Stability Assessment of a Power System Using Probabilistic Neural Network", Journal of Applied Sciences Research, 3(11), pp. 1267-1274, 2007.
    • (2007) Journal of Applied Sciences Research , vol.3 , Issue.11 , pp. 1267-1274
    • Wahab, N.I.A.1    Mohamed, A.2    Hussain, A.3
  • 25
    • 77949625328 scopus 로고    scopus 로고
    • Self-Organization Maps for Prediction of Kidney Dysfunction
    • Belgrade, Serbia
    • A. H. A. Al-Timemy, "Self-Organization Maps for Prediction of Kidney Dysfunction", Proc. 16th Telecommunications Forum TELFOR, Belgrade, Serbia, 2008.
    • (2008) Proc. 16th Telecommunications Forum TELFOR
    • Al-Timemy, A.H.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.