메뉴 건너뛰기




Volumn 81, Issue 3, 2010, Pages

Current-phase relation of a Bose-Einstein condensate flowing through a weak link

Author keywords

[No Author keywords available]

Indexed keywords

BARRIER HEIGHTS; BARRIER WIDTHS; BOSE-EINSTEIN CONDENSATES; CURRENT-PHASE RELATIONS; DISPERSIVE COMPONENTS; GROSS-PITAEVSKII EQUATION; JOSEPHSON; PHASE DIFFERENCE; POSITIVE CURRENT; POSITIVE VALUE; WEAK LINKS;

EID: 77949604875     PISSN: 10502947     EISSN: 10941622     Source Type: Journal    
DOI: 10.1103/PhysRevA.81.033613     Document Type: Article
Times cited : (28)

References (32)
  • 3
    • 0032395941 scopus 로고    scopus 로고
    • RMPHAT 0034-6861 10.1103/RevModPhys.70.641
    • R. E. Packard, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.70.641 70, 641 (1998).
    • (1998) Rev. Mod. Phys. , vol.70 , pp. 641
    • Packard, R.E.1
  • 4
    • 0000447754 scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.55.2704
    • O. Avenel and E. Varoquaux, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.55.2704 55, 2704 (1985).
    • (1985) Phys. Rev. Lett. , vol.55 , pp. 2704
    • Avenel, O.1    Varoquaux, E.2
  • 7
    • 0001291395 scopus 로고
    • PRLTAO 1098-0121 10.1103/PhysRevB.49.15913
    • F. Sols and J. Ferrer, Phys. Rev. B PRLTAO 1098-0121 10.1103/PhysRevB.49. 15913 49, 15913 (1994).
    • (1994) Phys. Rev. B , vol.49 , pp. 15913
    • Sols, F.1    Ferrer, J.2
  • 10
    • 0002611217 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.57.R28
    • I. Zapata, F. Sols, and A. J. Leggett, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.57.R28 57, R28 (1998).
    • (1998) Phys. Rev. A , vol.57 , pp. 28
    • Zapata, I.1    Sols, F.2    Leggett, A.J.3
  • 11
    • 33144465718 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.73.013604
    • D. Ananikian and T. Bergeman, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.73.013604 73, 013604 (2006).
    • (2006) Phys. Rev. A , vol.73 , pp. 013604
    • Ananikian, D.1    Bergeman, T.2
  • 12
    • 0035498138 scopus 로고    scopus 로고
    • EULEEJ 0295-5075 10.1209/epl/i2001-00523-2
    • M. L. Chiofalo and M. P. Tosi, Europhys. Lett. EULEEJ 0295-5075 10.1209/epl/i2001-00523-2 56, 326 (2001).
    • (2001) Europhys. Lett. , vol.56 , pp. 326
    • Chiofalo, M.L.1    Tosi, M.P.2
  • 13
    • 0035800480 scopus 로고    scopus 로고
    • SCIEAS 0036-8075 10.1126/science.1062612
    • F. S. Cataliotti, Science SCIEAS 0036-8075 10.1126/science.1062612 293, 843 (2001).
    • (2001) Science , vol.293 , pp. 843
    • Cataliotti, F.S.1
  • 15
    • 34948831973 scopus 로고    scopus 로고
    • NATUAS 0028-0836 10.1038/nature06186
    • S. Levy, Nature NATUAS 0028-0836 10.1038/nature06186 449, 579 (2007).
    • (2007) Nature , vol.449 , pp. 579
    • Levy, S.1
  • 16
    • 34547426283 scopus 로고    scopus 로고
    • PRLTAO 0031-9007 10.1103/PhysRevLett.99.040401
    • A. Spuntarelli, P. Pieri, and G. C. Strinati, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.040401 99, 040401 (2007).
    • (2007) Phys. Rev. Lett. , vol.99 , pp. 040401
    • Spuntarelli, A.1    Pieri, P.2    Strinati, G.C.3
  • 18
    • 64349098415 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.79.033627
    • F. Ancilotto, L. Salasnich, and F. Toigo, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.79.033627 79, 033627 (2009).
    • (2009) Phys. Rev. A , vol.79 , pp. 033627
    • Ancilotto, F.1    Salasnich, L.2    Toigo, F.3
  • 20
    • 0035441385 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.64.033602
    • P. Leboeuf and N. Pavloff, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.64.033602 64, 033602 (2001).
    • (2001) Phys. Rev. A , vol.64 , pp. 033602
    • Leboeuf, P.1    Pavloff, N.2
  • 23
    • 36049053467 scopus 로고
    • PHRVAO 0031-899X 10.1103/PhysRev.164.498
    • J. S. Langer and V. Ambegaokar, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.164.498 164, 498 (1967);
    • (1967) Phys. Rev. , vol.164 , pp. 498
    • Langer, J.S.1    Ambegaokar, V.2
  • 24
    • 18444413246 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.71.033609
    • B. T. Seaman, L. D. Carr, and M. J. Holland, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.71.033609 71, 033609 (2005);
    • (2005) Phys. Rev. A , vol.71 , pp. 033609
    • Seaman, B.T.1    Carr, L.D.2    Holland, M.J.3
  • 25
    • 33845458194 scopus 로고    scopus 로고
    • PLRAAN 1050-2947 10.1103/PhysRevA.74.063612
    • W. D. Li, Phys. Rev. A PLRAAN 1050-2947 10.1103/PhysRevA.74.063612 74, 063612 (2006).
    • (2006) Phys. Rev. A , vol.74 , pp. 063612
    • Li, W.D.1
  • 26
    • 77949643073 scopus 로고    scopus 로고
    • In general, the two solutions can both correspond to a positive Δ, both to a negative Δ, or one to a positive and the other to a negative Δ.
    • In general, the two solutions can both correspond to a positive Δ, both to a negative Δ, or one to a positive and the other to a negative Δ.
  • 27
    • 77949615811 scopus 로고    scopus 로고
    • The study of the stability of the two solutions is beyond the scope of the present article. This issue has been addressed in Ref. [24].
    • The study of the stability of the two solutions is beyond the scope of the present article. This issue has been addressed in Ref. [24].
  • 28
    • 0000676691 scopus 로고    scopus 로고
    • PLRAAN 1539-3755 10.1103/PhysRevE.55.2835
    • V. Hakim, Phys. Rev. E PLRAAN 1539-3755 10.1103/PhysRevE.55.2835 55, 2835 (1997).
    • (1997) Phys. Rev. e , vol.55 , pp. 2835
    • Hakim, V.1
  • 30
    • 77949575570 scopus 로고    scopus 로고
    • By further approximating n2(d) squ;n0 we get δΦsol=2arccos(j/ √gn03/m). Since n0 is a monotonically decreasing function of j, the argument of arccos increases for increasing current. Therefore, starting from π at j=0, δΦsol decreases monotonically with j.
    • By further approximating n 2 (d) squ; n 0 we get δ Φ sol = 2 arccos (j / √ gn 0 3 / m). Since n 0 is a monotonically decreasing function of j, the argument of arccos increases for increasing current. Therefore, starting from π at j = 0, δ Φ sol decreases monotonically with j.
  • 31
    • 77949624249 scopus 로고    scopus 로고
    • Close to the critical point (δΦc,jc), and for every current-phase relation, the lower branch always has a phase decreasing with increasing current, up to the critical point itself, at which it meets the upper branch. In particular, for reentrant diagrams, this means that the dispersive part of the flow always dominates over the hydrodynamic part sufficiently close to the critical point.
    • Close to the critical point (δ Φ c, j c), and for every current-phase relation, the lower branch always has a phase decreasing with increasing current, up to the critical point itself, at which it meets the upper branch. In particular, for reentrant diagrams, this means that the dispersive part of the flow always dominates over the hydrodynamic part sufficiently close to the critical point.
  • 32
    • 6144267129 scopus 로고
    • PYLAAG 0375-9601 10.1016/0375-9601(72)90496-3
    • B. S. Deaver and J. M. Pierce, Phys. Lett. A PYLAAG 0375-9601 10.1016/0375-9601(72)90496-3 38, 81 (1972).
    • (1972) Phys. Lett. A , vol.38 , pp. 81
    • Deaver, B.S.1    Pierce, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.