메뉴 건너뛰기




Volumn 24, Issue 6, 2010, Pages 673-685

A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis in hydroclimatology

Author keywords

Extreme value analysis; Neural network; Nonlinear hydroclimatology; Nonstationary; Statistical modelling

Indexed keywords

AKAIKE INFORMATION CRITERION; BAYESIAN INFORMATION CRITERION; CLIMATIC VARIABILITY; CONDITIONAL DENSITY; COVARIATES; EXTREME VALUE ANALYSIS; GENERALIZED EXTREME VALUE; GENERALIZED MAXIMUM LIKELIHOOD; HYDROCLIMATOLOGY; MODEL COMPLEXITY; MODEL PARAMETERS; MONTE CARLO SIMULATION; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; NON-LINEAR MODELLING; NON-STATIONARITIES; NONSTATIONARY; ON TIME; PRECIPITATION DATA; PROBABILISTIC EXTENSION; SMALL SAMPLE SIZE; SOUTHERN CALIFORNIA; STATISTICAL MODELLING; SYNTHETIC PROBLEM;

EID: 77949600582     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.7506     Document Type: Article
Times cited : (121)

References (43)
  • 1
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference: understanding AIC and BIC in model selection
    • Burnham KP, Anderson DR. 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological Methods and Research 33: 261-304.
    • (2004) Sociological Methods and Research , vol.33 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 4
    • 65349098924 scopus 로고    scopus 로고
    • Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network
    • Cannon AJ. 2008. Probabilistic multisite precipitation downscaling by an expanded Bernoulli-gamma density network. Journal of Hydrometeorology 9: 1284-1300.
    • (2008) Journal of Hydrometeorology , vol.9 , pp. 1284-1300
    • Cannon, A.J.1
  • 5
    • 0037112543 scopus 로고    scopus 로고
    • A graphical sensitivity analysis for statistical climate models: Application to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models
    • Cannon AJ, McKendry IG. 2002. A graphical sensitivity analysis for statistical climate models: Application to Indian monsoon rainfall prediction by artificial neural networks and multiple linear regression models. International Journal of Climatology 22: 1687-1708.
    • (2002) International Journal of Climatology , vol.22 , pp. 1687-1708
    • Cannon, A.J.1    McKendry, I.G.2
  • 7
  • 9
    • 12844260200 scopus 로고    scopus 로고
    • Generalized additive modelling of sample extremes
    • Chavez-Demoulin V, Davison A. 2005. Generalized additive modelling of sample extremes. Applied Statistics 54: 207-222.
    • (2005) Applied Statistics , vol.54 , pp. 207-222
    • Chavez-Demoulin, V.1    Davison, A.2
  • 10
    • 30144440385 scopus 로고    scopus 로고
    • The shortcomings of nonlinear principal component analysis in identifying circulation regimes
    • Christiansen B. 2005. The shortcomings of nonlinear principal component analysis in identifying circulation regimes. Journal of Climate 18: 4814-4823.
    • (2005) Journal of Climate , vol.18 , pp. 4814-4823
    • Christiansen, B.1
  • 12
    • 0001771552 scopus 로고    scopus 로고
    • Likelihood-based inference for extreme value models
    • Coles SG, Dixon MJ. 1999. Likelihood-based inference for extreme value models. Extremes 2: 5-23.
    • (1999) Extremes , vol.2 , pp. 5-23
    • Coles, S.G.1    Dixon, M.J.2
  • 13
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • Dawson CW, Wilby RL. 2001. Hydrological modelling using artificial neural networks. Progress in Physical Geography 25: 80-108.
    • (2001) Progress in Physical Geography , vol.25 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 34247577201 scopus 로고    scopus 로고
    • Generalized maximum likelihood estimators for the nonstationary generalized extreme value model
    • El Adlouni S, Ouarda TBMJ, Zhang X, Roy R, Bobee B. 2007. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resources Research 43: W03410.
    • (2007) Water Resources Research , vol.43
    • El Adlouni, S.1    Ouarda, T.B.M.J.2    Zhang, X.3    Roy, R.4    Bobee, B.5
  • 15
    • 29144494380 scopus 로고    scopus 로고
    • Smoothing sample extremes with dynamic models
    • Gaetan C, Grigoletto M. 2004. Smoothing sample extremes with dynamic models. Extremes 7: 221-236.
    • (2004) Extremes , vol.7 , pp. 221-236
    • Gaetan, C.1    Grigoletto, M.2
  • 16
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences
    • Gardner MW, Dorling SR. 1998. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmospheric Environment 32: 2627-2636.
    • (1998) Atmospheric Environment , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 18
    • 0036921622 scopus 로고    scopus 로고
    • Modulation of ENSO-based long-lead outlooks of Southwestern US winter precipitation by the Pacific decadal oscillation
    • Gutzler DS, Kann DM, Thornbrugh C. 2002. Modulation of ENSO-based long-lead outlooks of Southwestern US winter precipitation by the Pacific decadal oscillation. Weather and Forecasting 17: 1163-1172.
    • (2002) Weather and Forecasting , vol.17 , pp. 1163-1172
    • Gutzler, D.S.1    Kann, D.M.2    Thornbrugh, C.3
  • 19
    • 0000972155 scopus 로고    scopus 로고
    • Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data
    • Hall P, Tajvidi N. 2000. Nonparametric analysis of temporal trend when fitting parametric models to extreme-value data. Statistical Science 15: 153-167.
    • (2000) Statistical Science , vol.15 , pp. 153-167
    • Hall, P.1    Tajvidi, N.2
  • 20
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 21
    • 0000310360 scopus 로고
    • L-moments: analysis and estimation of distributions using linear combinations of order statistics
    • Hosking J. 1990. L-moments: analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B 52: 105-124.
    • (1990) Journal of the Royal Statistical Society, Series B , vol.52 , pp. 105-124
    • Hosking, J.1
  • 22
    • 0022113451 scopus 로고
    • Estimation of the generalized extreme value distribution by the method of probability-weighted moments
    • Hosking J, Wallis J, Wood E. 1985. Estimation of the generalized extreme value distribution by the method of probability-weighted moments. Technometrics 27: 251-261.
    • (1985) Technometrics , vol.27 , pp. 251-261
    • Hosking, J.1    Wallis, J.2    Wood, E.3
  • 23
    • 0032466364 scopus 로고    scopus 로고
    • Applying neural network models to prediction and data analysis in meteorology and oceanography
    • Hsieh WW, Tang B. 1998. Applying neural network models to prediction and data analysis in meteorology and oceanography. Bulletin of the American Meteorological Society 79: 1855-1870.
    • (1998) Bulletin of the American Meteorological Society , vol.79 , pp. 1855-1870
    • Hsieh, W.W.1    Tang, B.2
  • 24
    • 70349119250 scopus 로고
    • Regression and time series model selection in small samples
    • Hurvich CM, Tsai C. 1989. Regression and time series model selection in small samples. Biometrika 76: 297-307.
    • (1989) Biometrika , vol.76 , pp. 297-307
    • Hurvich, C.M.1    Tsai, C.2
  • 25
    • 0035706499 scopus 로고    scopus 로고
    • Floods in a changing climate: does the past represent the future?
    • Jain S, Lall U. 2001. Floods in a changing climate: does the past represent the future? Water Resources Research 37: 3193-3205.
    • (2001) Water Resources Research , vol.37 , pp. 3193-3205
    • Jain, S.1    Lall, U.2
  • 26
    • 84904261422 scopus 로고
    • The frequency distribution of the annual maximum (or minimum) values of meteorological elements
    • Jenkinson AF. 1955. The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society 81: 158-171.
    • (1955) Quarterly Journal of the Royal Meteorological Society , vol.81 , pp. 158-171
    • Jenkinson, A.F.1
  • 27
    • 33749161832 scopus 로고    scopus 로고
    • Frequency analysis of a sequence of dependent and/or non-stationary hydrometeorological observations: A review
    • Khaliq M, Ouarda T, Ondo J-C, Gachon P, Bobée B. 2006. Frequency analysis of a sequence of dependent and/or non-stationary hydrometeorological observations: A review. Journal of Hydrology 329: 534-552.
    • (2006) Journal of Hydrology , vol.329 , pp. 534-552
    • Khaliq, M.1    Ouarda, T.2    Ondo, J.-C.3    Gachon, P.4    Bobée, B.5
  • 28
    • 19144363700 scopus 로고    scopus 로고
    • Estimating extremes in transient climate change simulations
    • Kharin VV, Zwiers FW. 2004. Estimating extremes in transient climate change simulations. Journal of Climate 18: 1156-1173.
    • (2004) Journal of Climate , vol.18 , pp. 1156-1173
    • Kharin, V.V.1    Zwiers, F.W.2
  • 29
    • 0028561787 scopus 로고
    • Quantile spline models for global temperature change
    • Koenker R, Schorfheide F. 1994. Quantile spline models for global temperature change. Climatic Change 28: 395-404.
    • (1994) Climatic Change , vol.28 , pp. 395-404
    • Koenker, R.1    Schorfheide, F.2
  • 30
    • 65249134116 scopus 로고    scopus 로고
    • A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in extreme-value models
    • Kyselý J. 2008. A cautionary note on the use of nonparametric bootstrap for estimating uncertainties in extreme-value models. Journal of Applied Meteorology and Climatology 47: 3236-3251.
    • (2008) Journal of Applied Meteorology and Climatology , vol.47 , pp. 3236-3251
    • Kyselý, J.1
  • 31
    • 34547410881 scopus 로고    scopus 로고
    • Regional growth curves and improved design value estimates of extreme precipitation events in the Czech Republic
    • Kyselý J, Picek J. 2007. Regional growth curves and improved design value estimates of extreme precipitation events in the Czech Republic. Climate Research 33: 243-255.
    • (2007) Climate Research , vol.33 , pp. 243-255
    • Kyselý, J.1    Picek, J.2
  • 33
    • 0034019933 scopus 로고    scopus 로고
    • Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data
    • Martins ES, Stedinger JR. 2000. Generalized maximum-likelihood generalized extreme-value quantile estimators for hydrologic data. Water Resources Research 36: 737-744.
    • (2000) Water Resources Research , vol.36 , pp. 737-744
    • Martins, E.S.1    Stedinger, J.R.2
  • 34
    • 0033570696 scopus 로고    scopus 로고
    • Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States
    • McCabe GJ, Dettinger MD. 1999. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. International Journal of Climatology 19: 1399-1410.
    • (1999) International Journal of Climatology , vol.19 , pp. 1399-1410
    • McCabe, G.J.1    Dettinger, M.D.2
  • 37
    • 0002245041 scopus 로고
    • Estimation of conditional densities: a comparison of neural network approaches
    • Marinaro M, Morasso P (eds). Springer: Berlin
    • Neuneier R, Hergert F, Finnoff W, Ormoneit D. 1994. Estimation of conditional densities: a comparison of neural network approaches. In Proceedings of ICANN 94, Marinaro M, Morasso P (eds). Springer: Berlin; 689-692.
    • (1994) Proceedings of ICANN 94 , pp. 689-692
    • Neuneier, R.1    Hergert, F.2    Finnoff, W.3    Ormoneit, D.4
  • 39
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. 1978. Estimating the dimension of a model. The Annals of Statistics 6: 461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 40
    • 40849089316 scopus 로고    scopus 로고
    • Enso and wintertime extreme precipitation events over the contiguous united states
    • Shubert SD, Chang Y, Suarez MJ, Pegion PJ. 2008. Enso and wintertime extreme precipitation events over the contiguous united states. Journal of Climate 21: 22-39.
    • (2008) Journal of Climate , vol.21 , pp. 22-39
    • Shubert, S.D.1    Chang, Y.2    Suarez, M.J.3    Pegion, P.J.4
  • 41
    • 0001942153 scopus 로고    scopus 로고
    • Model selection for probabilistic clustering using cross- validated likelihood
    • Smyth P. 2000. Model selection for probabilistic clustering using cross- validated likelihood. Statistics and Computing 9: 63-72.
    • (2000) Statistics and Computing , vol.9 , pp. 63-72
    • Smyth, P.1
  • 42
    • 3242726089 scopus 로고    scopus 로고
    • North Atlantic ocean wave climate change scenarios for the twenty-first century
    • Wang XL, Zwiers FW, Swail VR. 2004. North Atlantic ocean wave climate change scenarios for the twenty-first century. Journal of Climate 17: 2368-2383.
    • (2004) Journal of Climate , vol.17 , pp. 2368-2383
    • Wang, X.L.1    Zwiers, F.W.2    Swail, V.R.3
  • 43
    • 34547887938 scopus 로고    scopus 로고
    • Vector generalized linear and additive extreme value models
    • Yee TW, Stephenson AG. 2007. Vector generalized linear and additive extreme value models. Extremes 10: 1-19.
    • (2007) Extremes , vol.10 , pp. 1-19
    • Yee, T.W.1    Stephenson, A.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.