-
1
-
-
0041566362
-
Asymptotic expansions based on smooth functions in the central limit theorem
-
A. D. BARBOUR (1986) Asymptotic expansions based on smooth functions in the central limit theorem. Probab. Theory Rel. Fields 72, 289-303.
-
(1986)
Probab. Theory Rel. Fields
, vol.72
, pp. 289-303
-
-
Barbour, A.D.1
-
4
-
-
38249005717
-
A central limit theorem for decomposable random variables with applications to random graphs
-
Ser. B
-
A. D. BARBOUR, M. KAROŃSKI and A. RUCIŃSKI (1989) A central limit theorem for decomposable random variables with applications to random graphs. J. Combin. Theory, Ser. B 47, 125-145.
-
(1989)
J. Combin. Theory
, vol.47
, pp. 125-145
-
-
Barbour, A.D.1
Karoński, M.2
Ruciński, A.3
-
6
-
-
0000390031
-
Basic properties of strong mixing conditions. Dependence in probability and statistics
-
Oberwolfach, 1985, Birkhauser, Boston, Mass
-
R. C. BRADLEY (1985) Basic properties of strong mixing conditions. Dependence in probability and statistics. In: Progr. Probab. Statist. 11, (Oberwolfach, 1985), 165-192. Birkhauser, Boston, Mass.
-
(1985)
Progr. Probab. Statist
, vol.11
, pp. 165-192
-
-
Bradley, R.C.1
-
7
-
-
0032340621
-
On the simultaneous behavior of the dependence coefficients associated with three strong mixing conditions
-
R. C. BRADLEY (1998) On the simultaneous behavior of the dependence coefficients associated with three strong mixing conditions. Rocky Mountain J. Math. 28, 393-415.
-
(1998)
Rocky Mountain J. Math
, vol.28
, pp. 393-415
-
-
Bradley, R.C.1
-
8
-
-
0037718654
-
-
Volume 1. Technical Report, Department of Mathematics, Custom Publishing of IU, Indiana University, Bloomington
-
R. C. BRADLEY (2002) introduction to Strong Mixing Conditions, Volume 1. Technical Report, Department of Mathematics, Custom Publishing of IU, Indiana University, Bloomington.
-
(2002)
Introduction to Strong Mixing Conditions
-
-
Bradley, R.C.1
-
10
-
-
0011228466
-
Stein’s method: Some perspectives with applications
-
Lecture Notes in Statistics 128, Springer, New York
-
L. H. Y. CHEN (1998) Stein’s method: some perspectives with applications. In: Probability towards 2000, Lecture Notes in Statistics 128, 97-122. Springer, New York.
-
(1998)
Probability towards 2000
, pp. 97-122
-
-
Chen, L.H.Y.1
-
11
-
-
0000448413
-
The invariance principle for stationary processes
-
Yu. A. DAVYDOV (1970) The invariance principle for stationary processes. Theor. Probab. Appl. 15, 487-498.
-
(1970)
Theor. Probab. Appl
, vol.15
, pp. 487-498
-
-
Davydov, Y.A.1
-
12
-
-
0000137215
-
Mixing conditions for Markov chains
-
Yu. A. DAVYDOV (1973) Mixing conditions for Markov chains. Theor. Probab. Appl. 18, 312-328.
-
(1973)
Theor. Probab. Appl
, vol.18
, pp. 312-328
-
-
Davydov, Y.A.1
-
13
-
-
0040712215
-
Asymptotic distribution of quadratic forms
-
F. GÖTZE and A. N. TIKHOMIROV (1999) Asymptotic distribution of quadratic forms. Ann. Probab. 27, 1072-1098.
-
(1999)
Ann. Probab
, vol.27
, pp. 1072-1098
-
-
Götze, F.1
Tikhomirov, A.N.2
-
14
-
-
0036306670
-
Asymptotic distribution of quadratic forms and applications
-
F. GÖTZE and A. N. TIKHOMIROV (2002) Asymptotic distribution of quadratic forms and applications. J. Theoret. Probab. 15, 423-475.
-
(2002)
J. Theoret. Probab
, vol.15
, pp. 423-475
-
-
Götze, F.1
Tikhomirov, A.N.2
-
15
-
-
84890782483
-
Spectral functions of certain classes of stationary Gaussian processes
-
I. A. IBRAGIMOV (1961) Spectral functions of certain classes of stationary Gaussian processes. Soviet Math. Dokl. 2, 403-405.
-
(1961)
Soviet Math. Dokl
, vol.2
, pp. 403-405
-
-
Ibragimov, I.A.1
-
17
-
-
84972578573
-
Examples of mixing sequences
-
H. KESTEN and G. L. O’BRIEN (1976) Examples of mixing sequences. Duke Math. J. 43, 405-415.
-
(1976)
Duke Math. J
, vol.43
, pp. 405-415
-
-
Kesten, H.1
O’brien, G.L.2
-
18
-
-
0000803498
-
On strong mixing conditions for stationary Gaussian processes
-
A. N. KOLMOGOROV and Yu. A. ROZANOV (1960) On strong mixing conditions for stationary Gaussian processes. Theor. Probab. Appl. 5, 204-208.
-
(1960)
Theor. Probab. Appl
, vol.5
, pp. 204-208
-
-
Kolmogorov, A.N.1
Rozanov, Y.A.2
-
21
-
-
33947358793
-
Couplings for normal approximations with Stein’s method
-
eds: D. J. Aldous and J. Propp, Dimacs series, AMS
-
G. REINERT (1998) Couplings for normal approximations with Stein’s method. In: Microsurveys in Discrete Probability, eds: D. J. Aldous and J. Propp. pp. 193-207. Dimacs series, AMS.
-
(1998)
Microsurveys in Discrete Probability
, pp. 193-207
-
-
Reinert, G.1
-
22
-
-
85136415407
-
An introduction to Stein’s method and application to empirical measures
-
eds: J. M. Gonzalez Barrios and L. G. Gorositza, Sociedad Matemätica Mexicana, Proceedings of the Symposium on Probability and Stochastic Processes, Guanajuato, Mexico
-
G. REINERT (1999) An introduction to Stein’s method and application to empirical measures. In: Modelos Estocästicos, eds: J. M. Gonzalez Barrios and L. G. Gorositza, Sociedad Matemätica Mexicana, pp. 65-120. Proceedings of the Symposium on Probability and Stochastic Processes, Guanajuato, Mexico.
-
(1999)
Modelos Estocästicos
, pp. 65-120
-
-
Reinert, G.1
-
24
-
-
0030075451
-
A multivariate CLT for local dependence with n-1/2logn rate, and applications to multivariate graph related statistics
-
Y. RINOTT and V. I. ROTAR (1996) A multivariate CLT for local dependence with n-1/2logn rate, and applications to multivariate graph related statistics. J. Multiv. Anal. 56, 333-350.
-
(1996)
J. Multiv. Anal
, vol.56
, pp. 333-350
-
-
Rinott, Y.1
Rotar, V.I.2
-
26
-
-
0042834085
-
On Edgeworth Expansions for Dependency- Neighborhoods Chain Structures and Stein’s Method
-
Y. RlNOTT and V. I. ROTAR (2003) On Edgeworth Expansions for Dependency- Neighborhoods Chain Structures and Stein’s Method. Probab. Theory Rel. Fields 126, 528-570.
-
(2003)
Probab. Theory Rel. Fields
, vol.126
, pp. 528-570
-
-
Rlnott, Y.1
Rotar, V.I.2
-
27
-
-
0000457248
-
A bound for the error in the normal approximation to the distribution of a sum of dependent random variables
-
Univ. California Press, Berkeley
-
C. STEIN (1972) A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. Proc. Sixth Berkeley Symp. Math. Statist. Prob. 2, pp. 583-602. Univ. California Press, Berkeley.
-
(1972)
Proc. Sixth Berkeley Symp. Math. Statist. Prob
, vol.2
, pp. 583-602
-
-
Stein, C.1
-
29
-
-
0001001924
-
Convergence rate in the central limit theorem for weakly dependent random variables
-
A. N. TlKHOMIROV (1980) Convergence rate in the central limit theorem for weakly dependent random variables. Theor. Probab. Appl. 25, 800-818.
-
(1980)
Theor. Probab. Appl
, vol.25
, pp. 800-818
-
-
Tlkhomirov, A.N.1
|