메뉴 건너뛰기




Volumn 72, Issue 11, 2010, Pages 4101-4114

Semilinear ordinary differential equation coupled with distributed order fractional differential equation

Author keywords

Fractional differentiation; Schauder fixed point theorem; Tempered distributions

Indexed keywords

CLASSICAL SOLUTIONS; EXISTENCE AND UNIQUENESS; FRACTIONAL DIFFERENTIAL EQUATIONS; FRACTIONAL DIFFERENTIATION; LINEAR FRACTIONAL DIFFERENTIAL EQUATIONS; SCHAUDER FIXED-POINT THEOREM; SEMILINEAR; SUFFICIENT CONDITIONS; TEMPERED DISTRIBUTIONS;

EID: 77949542095     PISSN: 0362546X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.na.2010.01.042     Document Type: Article
Times cited : (18)

References (30)
  • 1
    • 0002565890 scopus 로고
    • Springer-Verlag, Berlin
    • Truesdell C., and Noll W. The Non-Linear Field Theories of the Mechanics. Handbuch der Physik Band III/3 (1965), Springer-Verlag, Berlin 1-602
    • (1965) Handbuch der Physik , vol.Band III-3 , pp. 1-602
    • Truesdell, C.1    Noll, W.2
  • 2
    • 77949541895 scopus 로고    scopus 로고
    • A generalized model for the uniaxial isothermal deformation of a viscoelastic body
    • Atanackovic T.M. A generalized model for the uniaxial isothermal deformation of a viscoelastic body. Acta Mech. 30 (2002) 1-10
    • (2002) Acta Mech. , vol.30 , pp. 1-10
    • Atanackovic, T.M.1
  • 3
    • 0021439912 scopus 로고
    • On the appearance of the fractional derivative in the behavior of real materials
    • Bagley R.L., and Torvik P.J. On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. (1984) 294-298
    • (1984) J. Appl. Mech. , pp. 294-298
    • Bagley, R.L.1    Torvik, P.J.2
  • 4
    • 0000930143 scopus 로고
    • A new dissipation model based on memory mechanism
    • Caputo M., and Mainardi F. A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91 (1971) 134-147
    • (1971) Pure Appl. Geophys. , vol.91 , pp. 134-147
    • Caputo, M.1    Mainardi, F.2
  • 5
    • 84977255207 scopus 로고
    • Linear models of disipation whose q is almost frequency independent
    • Caputo M. Linear models of disipation whose q is almost frequency independent. Geophys. J. R. Astron. Soc. 13 (1967) 529-539
    • (1967) Geophys. J. R. Astron. Soc. , vol.13 , pp. 529-539
    • Caputo, M.1
  • 6
    • 0142183629 scopus 로고    scopus 로고
    • On a distributed derivative model of viscoelastic body
    • Atanackovic T.M. On a distributed derivative model of viscoelastic body. CRAS Mech. 331 (2003) 687-692
    • (2003) CRAS Mech. , vol.331 , pp. 687-692
    • Atanackovic, T.M.1
  • 8
    • 26844448728 scopus 로고    scopus 로고
    • On a class of equations arising in linear viscoelasticity theory
    • Atanackovic T.M., and Pilipović S. On a class of equations arising in linear viscoelasticity theory. Z. Angew. Math. Mech. 85 10 (2005) 748-754
    • (2005) Z. Angew. Math. Mech. , vol.85 , Issue.10 , pp. 748-754
    • Atanackovic, T.M.1    Pilipović, S.2
  • 9
    • 0000227056 scopus 로고    scopus 로고
    • Distributed order differential equation modeling dielectric induction and diffusion
    • Caputo M. Distributed order differential equation modeling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4 (2001) 421-442
    • (2001) Fract. Calc. Appl. Anal. , vol.4 , pp. 421-442
    • Caputo, M.1
  • 11
    • 67149125441 scopus 로고    scopus 로고
    • Time distributed diffusion-wave equation II. Applications of Laplace and Fourier transformations
    • Atanackovic T.M., Pilipović S., and Zorica D. Time distributed diffusion-wave equation II. Applications of Laplace and Fourier transformations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 (2009) 1893-1917
    • (2009) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.465 , pp. 1893-1917
    • Atanackovic, T.M.1    Pilipović, S.2    Zorica, D.3
  • 12
    • 41349088572 scopus 로고    scopus 로고
    • Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equation
    • Chechkin A.V., Gorenflo R., and Sokolov I.M. Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equation. Phys. Rev. E 66 046129 (2002) 1-6
    • (2002) Phys. Rev. E , vol.66 , Issue.046129 , pp. 1-6
    • Chechkin, A.V.1    Gorenflo, R.2    Sokolov, I.M.3
  • 14
    • 34547102267 scopus 로고    scopus 로고
    • The role of the fox-wright function in fractional sub-diffusion of distributed order
    • F. Mainardi, G. Pagnini, The role of the fox-wright function in fractional sub-diffusion of distributed order, J. Comput. Appl. Math., 207, pp. 245-257.
    • J. Comput. Appl. Math , vol.207 , pp. 245-257
    • Mainardi, F.1    Pagnini, G.2
  • 15
    • 34247367101 scopus 로고    scopus 로고
    • Some aspects of fractional diffusion equation of single and distributed order
    • F. Mainardi, G. Pagnini, R. Gorenflo, Some aspects of fractional diffusion equation of single and distributed order, Appl. Math. Comput., 187, pp. 295-305.
    • Appl. Math. Comput , vol.187 , pp. 295-305
    • Mainardi, F.1    Pagnini, G.2    Gorenflo, R.3
  • 16
    • 0001342751 scopus 로고    scopus 로고
    • On the existence of the order domain and the solution of distributed order equations I and II
    • pp. 965-987
    • Bagely R.L., and Torvik P.J. On the existence of the order domain and the solution of distributed order equations I and II. Int. J. Appl. Math. 2 (2000) 865-882 pp. 965-987
    • (2000) Int. J. Appl. Math. , vol.2 , pp. 865-882
    • Bagely, R.L.1    Torvik, P.J.2
  • 17
    • 77949539838 scopus 로고    scopus 로고
    • Fractional-order system identification based on continuous order-distributions
    • Hartley T.T., and Lorenzo C.F. Fractional-order system identification based on continuous order-distributions. Appl. Anal. 86 (2007) 1347-1363
    • (2007) Appl. Anal. , vol.86 , pp. 1347-1363
    • Hartley, T.T.1    Lorenzo, C.F.2
  • 19
    • 0036650866 scopus 로고    scopus 로고
    • Fractional calculus via functional calculus: Theory and applications
    • S. Kempfle, I. Schäfer, H. Beyer, Fractional calculus via functional calculus: Theory and applications, Nonlinear Dynam., 29, pp. 99-127.
    • Nonlinear Dynam , vol.29 , pp. 99-127
    • Kempfle, S.1    Schäfer, I.2    Beyer, H.3
  • 20
    • 58549120748 scopus 로고    scopus 로고
    • Numerical analysis for distributed-order differential equations
    • Diethelm K., and Ford N.J. Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225 1 (2009) 96-104
    • (2009) J. Comput. Appl. Math. , vol.225 , Issue.1 , pp. 96-104
    • Diethelm, K.1    Ford, N.J.2
  • 21
    • 37449011239 scopus 로고    scopus 로고
    • Distributed order calculus and equations of ultraslow diffusion
    • A.N. Kochubei, Distributed order calculus and equations of ultraslow diffusion, J. Math. Anal. Appl., 340, pp. 252-281.
    • J. Math. Anal. Appl , vol.340 , pp. 252-281
    • Kochubei, A.N.1
  • 23
    • 33845944224 scopus 로고    scopus 로고
    • On a nonlinear distributed order fractional differential equation
    • Atanackovic T.M., Oparnica Lj., and Pilipović S. On a nonlinear distributed order fractional differential equation. J. Math. Anal. Appl. 328 (2007) 590-608
    • (2007) J. Math. Anal. Appl. , vol.328 , pp. 590-608
    • Atanackovic, T.M.1    Oparnica, Lj.2    Pilipović, S.3
  • 24
    • 0030528474 scopus 로고
    • Existence and uniqueness for nonlinear fractional differential equation
    • Delbosco D., and Rodino L. Existence and uniqueness for nonlinear fractional differential equation. J. Math. Anal. Appl. 204 (1995) 609-625
    • (1995) J. Math. Anal. Appl. , vol.204 , pp. 609-625
    • Delbosco, D.1    Rodino, L.2
  • 28
    • 61949113544 scopus 로고    scopus 로고
    • Distributional framework for solving fractional differential equation
    • arXiv:0902.0496
    • Atanackovic T.M., Oparnica Lj., and Pilipović S. Distributional framework for solving fractional differential equation. Integral Transforms Spec. Funct. 20 (2009) 215-222. arXiv:0902.0496
    • (2009) Integral Transforms Spec. Funct. , vol.20 , pp. 215-222
    • Atanackovic, T.M.1    Oparnica, Lj.2    Pilipović, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.