메뉴 건너뛰기




Volumn , Issue , 2009, Pages 596-601

Fully unsupervised learning of Gaussian mixtures for anomaly detection in hyperspectral imagery

Author keywords

Anomaly detection; Bayesian approach; Gaussian mixture; Hyperspectral imagery; Model selection

Indexed keywords

ANOMALY DETECTION; BAYESIAN APPROACHES; GAUSSIAN MIXTURES; HYPERSPECTRAL IMAGERY; MODEL SELECTION;

EID: 77949510845     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2009.220     Document Type: Conference Paper
Times cited : (37)

References (20)
  • 3
    • 13144306114 scopus 로고    scopus 로고
    • A cluster-based approach for detecting man-made objects and changes in imagery
    • M.J. Carlotto, "A cluster-based approach for detecting man-made objects and changes in imagery", IEEE Trans. Geosci. Remote Sensing, vol. 43, no. 2, 2005, pp. 374-387.
    • (2005) IEEE Trans. Geosci. Remote Sensing , vol.43 , Issue.2 , pp. 374-387
    • Carlotto, M.J.1
  • 7
    • 34547877676 scopus 로고    scopus 로고
    • An online classification EM algorithm based on the mixture model
    • A. Samè, C. Ambroise, and G. Govaert, "An online classification EM algorithm based on the mixture model", Statistics and Computing, Vol. 17, No. 3 2007, pp. 209-218.
    • (2007) Statistics and Computing , vol.17 , Issue.3 , pp. 209-218
    • Samè, A.1    Ambroise, C.2    Govaert, G.3
  • 8
    • 0030287048 scopus 로고    scopus 로고
    • The Expectation-Maximization algorithm
    • T.K. Moon, "The Expectation-Maximization algorithm", IEEE Sig. Process. Mag., vol. 13, no. 6, 1996, pp. 47-60.
    • (1996) IEEE Sig. Process. Mag , vol.13 , Issue.6 , pp. 47-60
    • Moon, T.K.1
  • 9
    • 0032027086 scopus 로고    scopus 로고
    • Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier
    • E.A. Ashton, "Detection of subpixel anomalies in multispectral infrared imagery using an adaptive Bayesian classifier, IEEE Trans. Geosci. Remote Sensing, 1998, pp. 506-517.
    • (1998) IEEE Trans. Geosci. Remote Sensing , pp. 506-517
    • Ashton, E.A.1
  • 10
    • 35948983049 scopus 로고    scopus 로고
    • P. Hytla, R.C. Hardie, M.T. Eismann, and J. Meola, Anomaly detection in hyperspectral imagery: a comparison of methods using seasonal data, in proc. SPIE, 6565, 2007, pp. 566506-1-11 .
    • P. Hytla, R.C. Hardie, M.T. Eismann, and J. Meola, "Anomaly detection in hyperspectral imagery: a comparison of methods using seasonal data", in proc. SPIE, vol. 6565, 2007, pp. 566506-1-11 .
  • 11
    • 42449156759 scopus 로고    scopus 로고
    • Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set
    • S. Matteoli, F. Carnesecchi, M. Diani, G. Corsini, and L. Chiarantini, "Comparative analysis of hyperspectral anomaly detection strategies on a new high spatial and spectral resolution data set", in proc. SPIE, vol. 6748, 2007, pp. 67480E-1-11
    • (2007) proc. SPIE , vol.6748
    • Matteoli, S.1    Carnesecchi, F.2    Diani, M.3    Corsini, G.4    Chiarantini, L.5
  • 12
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of Gaussian mixtures based on varitional component splitting
    • C. Constantinopoulos, and A. Likas, "Unsupervised learning of Gaussian mixtures based on varitional component splitting", IEEE Trans. Neural Netw., vol. 18, issue 3, 2007, pp. 745-755
    • (2007) IEEE Trans. Neural Netw , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.2
  • 16
    • 0000147488 scopus 로고    scopus 로고
    • On-line model selection based on the variational Bayes
    • MIT Press
    • M. Sato, "On-line model selection based on the variational Bayes", Neural Comput., vol. 13, no. 7, MIT Press, 2001, pp. 1649-1681.
    • (2001) Neural Comput , vol.13 , Issue.7 , pp. 1649-1681
    • Sato, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.