-
1
-
-
0023326910
-
How to identify bathtub hazard rate
-
M.V. Aarset, How to identify bathtub hazard rate, IEEE Trans. Reliab. 36 (1987), pp. 106-108.
-
(1987)
IEEE Trans. Reliab.
, vol.36
, pp. 106-108
-
-
Aarset, M.V.1
-
2
-
-
0041881966
-
Existence and uniqueness of the MLEs for normal distribution based on general progressively type-2 censored samples
-
N. Balakrishnan and J. Mi, Existence and uniqueness of the MLEs for normal distribution based on general progressively type-2 censored samples, Statist. Probab. Lett. 64 (2003), pp. 407-414.
-
(2003)
Statist. Probab. Lett.
, vol.64
, pp. 407-414
-
-
Balakrishnan, N.1
Mi, J.2
-
3
-
-
0013914157
-
Evaluation of the maximum-likelihood estimator where the likelihood equation has multiple roots
-
V.D. Barnett, Evaluation of the maximum-likelihood estimator where the likelihood equation has multiple roots, Biometrika 53 (1966), pp. 151-165.
-
(1966)
Biometrika
, vol.53
, pp. 151-165
-
-
Barnett, V.D.1
-
4
-
-
33847776921
-
Zitikis, optimum burn-in time for a bathtub-shaped failure distribution, methodol
-
M. Bebbington, C.D. Lai, and R. Zitikis, Optimum burn-in time for a bathtub-shaped failure distribution,Methodol. Comput. Appl. Probab. 9 (2007), pp. 1-20.
-
(2007)
Comput. Appl. Probab.
, vol.9
, pp. 1-20
-
-
Bebbington, M.1
Lai, C.D.2
-
5
-
-
41249094425
-
Log-modified Weibull regression models with censored data: Sensitivity and residual analysis
-
J.M.F. Carrasco, E.M.M. Ortega, and G.A. Paula, Log-modified Weibull regression models with censored data: sensitivity and residual analysis, Comput. Statist. Data Anal. 52 (2008), pp. 4021-4039.
-
(2008)
Comput. Statist. Data Anal.
, vol.52
, pp. 4021-4039
-
-
Carrasco, J.M.F.1
Ortega, E.M.M.2
Paula, G.A.3
-
6
-
-
33845681735
-
Generalization of the Weibull distribution: The odd Weibull family
-
K. Cooray, Generalization of the Weibull distribution: The odd Weibull family, Statist. Model. 6 (2006), pp. 265-277.
-
(2006)
Statist. Model.
, vol.6
, pp. 265-277
-
-
Cooray, K.1
-
7
-
-
34250376002
-
A lifetime distribution with an upside-down bathtub-shaped hazard function
-
T.D. Dimitrakopoulou, K. Adamidis, and S. Loukas, A lifetime distribution with an upside-down bathtub-shaped hazard function, IEEE Trans. Reliab. 56 (2007), pp. 308-311.
-
(2007)
IEEE Trans. Reliab.
, vol.56
, pp. 308-311
-
-
Dimitrakopoulou, T.D.1
Adamidis, K.2
Loukas, S.3
-
8
-
-
0031382496
-
Uniqueness of maximum likelihood estimators of the 2-parameter Weibull distribution
-
N.R. Farnum and P. Booth, Uniqueness of maximum likelihood estimators of the 2-parameter Weibull distribution, IEEE Trans. Reliab. 46 (1997), pp. 523-525.
-
(1997)
IEEE Trans. Reliab.
, vol.46
, pp. 523-525
-
-
Farnum, N.R.1
Booth, P.2
-
9
-
-
0031140951
-
A new statistical distribution for characterizing random strength of brittle materials
-
M.R. Gurvich, A.T. Dibenedetto, and S.V. Ranade, A new statistical distribution for characterizing random strength of brittle materials, J. Mater. Sci. 32 (1997), pp. 2559-2564.
-
(1997)
J. Mater. Sci.
, vol.32
, pp. 2559-2564
-
-
Gurvich, M.R.1
Dibenedetto, A.T.2
Ranade, S.V.3
-
10
-
-
0031144309
-
Inference from grouped data in three-parameter Weibull models with applications to breakdown-voltage experiments
-
H. Hirose and T.L. Lai, Inference from grouped data in three-parameter Weibull models with applications to breakdown-voltage experiments, Technometrics 39 (1997), pp. 199-210.
-
(1997)
Technometrics
, vol.39
, pp. 199-210
-
-
Hirose, H.1
Lai, T.L.2
-
11
-
-
46249125310
-
Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution
-
H. Jiang, M. Xie, and L.C. Tang, Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution, J. Appl. Statist. 35 (2008), pp. 647-658.
-
(2008)
J. Appl. Statist.
, vol.35
, pp. 647-658
-
-
Jiang, H.1
Xie, M.2
Tang, L.C.3
-
12
-
-
0031097979
-
Two sectional models involving three Weibull distributions
-
R. Jiang and D.N.P. Murthy, Two sectional models involving three Weibull distributions, Qual. Reliab. Eng. Int. 13 (1997), pp. 83-96.
-
(1997)
Qual. Reliab. Eng. Int.
, vol.13
, pp. 83-96
-
-
Jiang, R.1
Murthy, D.N.P.2
-
13
-
-
0344735887
-
Study of n-fold Weibull competing risk model
-
R. Jiang and D.N.P. Murthy, Study of n-fold Weibull competing risk model, Math. Comput. Model. 38 (2003), pp. 1259-1273.
-
(2003)
Math. Comput. Model.
, vol.38
, pp. 1259-1273
-
-
Jiang, R.1
Murthy, D.N.P.2
-
14
-
-
0026881076
-
Graphical representation of two mixed-Weibull distributions
-
S. Jiang and D. Kececioglu, Graphical representation of two mixed-Weibull distributions, IEEE Trans. Reliab. 41 (1992), pp. 241-247.
-
(1992)
IEEE Trans. Reliab.
, vol.41
, pp. 241-247
-
-
Jiang, S.1
Kececioglu, D.2
-
15
-
-
0037334196
-
A modified Weibull distribution
-
C.D. Lai, M. Xie, and D.N.P. Murthy, A modified Weibull distribution, IEEE Trans. Reliab. 52 (2003), pp. 33-37.
-
(2003)
IEEE Trans. Reliab.
, vol.52
, pp. 33-37
-
-
Lai, C.D.1
Xie, M.2
Murthy, D.N.P.3
-
16
-
-
3242779265
-
Mean residual life and other properties of Weibull related bathtub shape failure rate distributions
-
C.D. Lai, L.Y. Zhang, and M. Xie, Mean residual life and other properties of Weibull related bathtub shape failure rate distributions, Int. J. Reliab. Qual. Saf. Eng. 11 (2004), pp. 113-132.
-
(2004)
Int. J. Reliab. Qual. Saf. Eng.
, vol.11
, pp. 113-132
-
-
Lai, C.D.1
Zhang, L.Y.2
Xie, M.3
-
17
-
-
0001143341
-
On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples
-
T. Makelainen, K. Schmidt, and G.P.H. Styan, On the existence and uniqueness of the maximum likelihood estimate of a vector-valued parameter in fixed-size samples, Ann. Statist. 9 (1981), pp. 758-767.
-
(1981)
Ann. Statist.
, vol.9
, pp. 758-767
-
-
Makelainen, T.1
Schmidt, K.2
Styan, G.P.H.3
-
18
-
-
0001324423
-
A new method for adding a parameter to a family of distribution with application to the exponential and Weibull families
-
A.W. Marshall and I. Olkin, A new method for adding a parameter to a family of distribution with application to the exponential and Weibull families, Biometrika 84 (1997), pp. 641-652.
-
(1997)
Biometrika
, vol.84
, pp. 641-652
-
-
Marshall, A.W.1
Olkin, I.2
-
19
-
-
33745005526
-
MLE of parameters of location-scale distribution for complete and partially grouped data
-
J. Mi, MLE of parameters of location-scale distribution for complete and partially grouped data. J. Statist. Plann. Inference 136 (2006), pp. 3565-3582.
-
(2006)
J. Statist. Plann. Inference
, vol.136
, pp. 3565-3582
-
-
Mi, J.1
-
20
-
-
0027608675
-
Exponentiated Weibull family for analyzing bathtub failure-rate data
-
G.S. Mudholkar and D.K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab. 42 (1993), pp. 299-302.
-
(1993)
IEEE Trans. Reliab.
, vol.42
, pp. 299-302
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
-
21
-
-
0029404196
-
The exponentiatedWeibull family: A reanalysis of the bus-motorfailure data
-
G.S. Mudholkar, D.K. Srivastava, and M. Freimer, The exponentiatedWeibull family: A reanalysis of the bus-motorfailure data, Technometrics 37 (1995), pp. 436-445.
-
(1995)
Technometrics
, vol.37
, pp. 436-445
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
Freimer, M.3
-
22
-
-
27844474258
-
Parameter estimation for a modified Weibull distribution, for progressively type-2 censored samples
-
H.K.T. Ng, Parameter estimation for a modified Weibull distribution, for progressively type-2 censored samples, IEEE Trans. Reliab. 54 (2005), pp. 374-380.
-
(2005)
IEEE Trans. Reliab.
, vol.54
, pp. 374-380
-
-
Ng, H.K.T.1
-
23
-
-
0007202043
-
Maximum likelihood estimation with the Weibull model
-
H. Rockette, C. Antle, and L.A. Klimko, Maximum likelihood estimation with the Weibull model, J. Amer. Statist. Assoc. 69 (1974), pp. 246-249.
-
(1974)
J. Amer. Statist. Assoc.
, vol.69
, pp. 246-249
-
-
Rockette, H.1
Antle, C.2
Klimko, L.A.3
-
24
-
-
10044240573
-
Estimation of parameters for exponentiated-Weibull family under type-2 censoring scheme
-
U. Singh, P.K. Gupta, and S.K. Upadhyay, Estimation of parameters for exponentiated-Weibull family under type-2 censoring scheme, Comput. Statist. Data Anal. 48 (2005), pp. 509-523.
-
(2005)
Comput. Statist. Data Anal.
, vol.48
, pp. 509-523
-
-
Singh, U.1
Gupta, P.K.2
Upadhyay, S.K.3
-
25
-
-
0038516719
-
Statistical analysis of a Weibull extension model
-
Y. Tang, M. Xie, and T.N. Goh, Statistical analysis of a Weibull extension model, Comm. Statist. Theory Methods 32 (2003), pp. 913-928.
-
(2003)
Comm. Statist. Theory Methods
, vol.32
, pp. 913-928
-
-
Tang, Y.1
Xie, M.2
Goh, T.N.3
-
26
-
-
0344119556
-
Uniqueness of the maximum likelihood estimate of theWeibull distribution tampered failure rate model
-
R. H. Wang and H. L. Fei, Uniqueness of the maximum likelihood estimate of theWeibull distribution tampered failure rate model, Comm. Statist. Theory Methods 32 (2003), pp. 2321-2338.
-
(2003)
Comm. Statist. Theory Methods
, vol.32
, pp. 2321-2338
-
-
Wang, R.H.1
Fei, H.L.2
-
27
-
-
2142825691
-
On changing points of mean residual life and failure rate function for some generalized Weibull distribution
-
M. Xie, T. N. Goh, and Y. Tang, On changing points of mean residual life and failure rate function for some generalized Weibull distribution, Reliab. Eng. Syst. Saf. 84 (2004), pp. 293-299.
-
(2004)
Reliab. Eng. Syst. Saf.
, vol.84
, pp. 293-299
-
-
Xie, M.1
Goh, T.N.2
Tang, Y.3
-
28
-
-
0030122796
-
Reliability analysis using an additiveWeibull model with bathtub-shaped failure rate function
-
M. Xie and C.D. Lai, Reliability analysis using an additiveWeibull model with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf. 52 (1996), pp. 87-93.
-
(1996)
Reliab. Eng. Syst. Saf.
, vol.52
, pp. 87-93
-
-
Xie, M.1
Lai, C.D.2
-
29
-
-
0036604308
-
A modifiedWeibull extension with bathtub-shaped failure rate function
-
M. Xie, Y. Tang, and T. N. Goh, A modifiedWeibull extension with bathtub-shaped failure rate function, Reliab. Eng. Syst. Saf. 76 (2002), pp. 279-285.
-
(2002)
Reliab. Eng. Syst. Saf.
, vol.76
, pp. 279-285
-
-
Xie, M.1
Tang, Y.2
Goh, T.N.3
-
30
-
-
34249697551
-
Failure data analysis with extended Weibull distribution
-
T.L. Zhang and M. Xie, Failure data analysis with extended Weibull distribution, Comm. Statist. Simulation Comput. 36 (2007), pp. 579-592.
-
(2007)
Comm. Statist. Simulation Comput.
, vol.36
, pp. 579-592
-
-
Zhang, T.L.1
Xie, M.2
|