메뉴 건너뛰기




Volumn 216, Issue 3, 2010, Pages 753-767

Bifurcation analysis of a delayed epidemic model

Author keywords

Delay; Hopf bifurcation; Nonlinear incidence rate; Stability; Stage structure

Indexed keywords

BIFURCATING PERIODIC SOLUTIONS; BIFURCATION ANALYSIS; CENTER MANIFOLD; EPIDEMIC MODELS; EXPLICIT FORMULA; INHIBITION EFFECT; NONLINEAR INCIDENCE RATE; NONLINEAR INCIDENCE RATES; NORMAL FORM THEORY; NUMERICAL SIMULATION; POSITIVE EQUILIBRIUM; STAGE STRUCTURE;

EID: 77949488361     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2010.01.074     Document Type: Article
Times cited : (28)

References (16)
  • 1
    • 1542406443 scopus 로고    scopus 로고
    • Bifurcation in an epidemic model with constant removal rate of the infectives
    • Wang W.D., and Ruan S.G. Bifurcation in an epidemic model with constant removal rate of the infectives. J. Math. Anal. Appl. 291 (2004) 775-793
    • (2004) J. Math. Anal. Appl. , vol.291 , pp. 775-793
    • Wang, W.D.1    Ruan, S.G.2
  • 2
    • 34249311311 scopus 로고    scopus 로고
    • Bifurcation analysis on a delayed SIS epidemic model with stage structure
    • Liu L., Li X.G., and Zhuang K.J. Bifurcation analysis on a delayed SIS epidemic model with stage structure. Electron. J. Differ. Equat. 2007 (2007) 1-17
    • (2007) Electron. J. Differ. Equat. , vol.2007 , pp. 1-17
    • Liu, L.1    Li, X.G.2    Zhuang, K.J.3
  • 3
    • 64949089689 scopus 로고    scopus 로고
    • Bifurcation analysis of a delayed SIS epidemic model with stage structure
    • Zhang T.L., Liu J.L., and Teng Z.D. Bifurcation analysis of a delayed SIS epidemic model with stage structure. Chaos Solitons Fract. 40 (2009) 563-576
    • (2009) Chaos Solitons Fract. , vol.40 , pp. 563-576
    • Zhang, T.L.1    Liu, J.L.2    Teng, Z.D.3
  • 4
    • 70350716898 scopus 로고    scopus 로고
    • Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure
    • Zhang T.L., Liu J.L., and Teng Z.D. Stability of Hopf bifurcation of a delayed SIRS epidemic model with stage structure. Nonlinear Anal. 11 (2010) 293-306
    • (2010) Nonlinear Anal. , vol.11 , pp. 293-306
    • Zhang, T.L.1    Liu, J.L.2    Teng, Z.D.3
  • 5
    • 35348842323 scopus 로고    scopus 로고
    • Qualitative analysis of an SIR epidemic model with stage structure
    • Jia J.W., and Li Q.Y. Qualitative analysis of an SIR epidemic model with stage structure. Appl. Math. Comput. 193 (2007) 106-115
    • (2007) Appl. Math. Comput. , vol.193 , pp. 106-115
    • Jia, J.W.1    Li, Q.Y.2
  • 6
    • 16844376279 scopus 로고    scopus 로고
    • Analysis of a SIS epidemic model with stage structure and a delay
    • Xiao Y.N., and Chen L.S. Analysis of a SIS epidemic model with stage structure and a delay. Commun. Nonlinear Sci. Numer. Simul. 6 (2001) 35-39
    • (2001) Commun. Nonlinear Sci. Numer. Simul. , vol.6 , pp. 35-39
    • Xiao, Y.N.1    Chen, L.S.2
  • 7
    • 0033209987 scopus 로고    scopus 로고
    • Interaction of maturation delay and nonlinear birth in population and epidemic models
    • Cooke K., Driessche P.V.D., and Zou X. Interaction of maturation delay and nonlinear birth in population and epidemic models. J. Math. Biol. 39 (1999) 332-352
    • (1999) J. Math. Biol. , vol.39 , pp. 332-352
    • Cooke, K.1    Driessche, P.V.D.2    Zou, X.3
  • 8
    • 0018041874 scopus 로고
    • A generalization of the Kermack-McKendrick deterministic epidemic model
    • Capasso V., and Serio G. A generalization of the Kermack-McKendrick deterministic epidemic model. Math. Biosci. 42 (1978) 41-61
    • (1978) Math. Biosci. , vol.42 , pp. 41-61
    • Capasso, V.1    Serio, G.2
  • 9
    • 34547134261 scopus 로고    scopus 로고
    • Global analysis of an epidemic model with nonmonotone incidence rate
    • Xiao D.M., and Ruan S.G. Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208 (2007) 419-429
    • (2007) Math. Biosci. , vol.208 , pp. 419-429
    • Xiao, D.M.1    Ruan, S.G.2
  • 10
    • 0037429355 scopus 로고    scopus 로고
    • Dynamical behavior of an epidemic model with a nonlinear incidence rate
    • Ruan S.G., and Wang W.D. Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equat. 188 (2003) 135-163
    • (2003) J. Differ. Equat. , vol.188 , pp. 135-163
    • Ruan, S.G.1    Wang, W.D.2
  • 11
    • 64049103800 scopus 로고    scopus 로고
    • Global stability of a SIR epidemic model with nonlinear incidence rate and time delay
    • Xu R., and Ma Z.E. Global stability of a SIR epidemic model with nonlinear incidence rate and time delay. Nonlinear Anal. 10 (2009) 3175-3189
    • (2009) Nonlinear Anal. , vol.10 , pp. 3175-3189
    • Xu, R.1    Ma, Z.E.2
  • 12
    • 0042828944 scopus 로고    scopus 로고
    • Global dynamics of an SEIR epidemic model with saturating contact rate
    • Zhang J., and Ma Z.E. Global dynamics of an SEIR epidemic model with saturating contact rate. Math. Biosci. 185 (2003) 15-32
    • (2003) Math. Biosci. , vol.185 , pp. 15-32
    • Zhang, J.1    Ma, Z.E.2
  • 13
    • 0003100558 scopus 로고
    • Stability analysis for a vector disease model
    • Cooke K.L. Stability analysis for a vector disease model. Rocky Mountain J. Math. 9 (1979) 31-42
    • (1979) Rocky Mountain J. Math. , vol.9 , pp. 31-42
    • Cooke, K.L.1
  • 15
    • 28444444207 scopus 로고    scopus 로고
    • Bifurcation analysis in a predator-prey system with time delay
    • Song Y.L., and Yuan S.L. Bifurcation analysis in a predator-prey system with time delay. Nonlinear Anal. 7 (2006) 265-284
    • (2006) Nonlinear Anal. , vol.7 , pp. 265-284
    • Song, Y.L.1    Yuan, S.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.