-
1
-
-
0141720091
-
Existence of periodic solutions for a class of nonlinear evolution equations
-
Caşcaval R., and Vrabie I.I. Existence of periodic solutions for a class of nonlinear evolution equations. Rev. Mat. Univ. Complut. Madrid 7 (1994) 325-338
-
(1994)
Rev. Mat. Univ. Complut. Madrid
, vol.7
, pp. 325-338
-
-
Caşcaval, R.1
Vrabie, I.I.2
-
2
-
-
84966199402
-
Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces
-
Hirano N. Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. Amer. Math. Soc. 120 (1994) 185-192
-
(1994)
Proc. Amer. Math. Soc.
, vol.120
, pp. 185-192
-
-
Hirano, N.1
-
3
-
-
2942514465
-
Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems
-
Hirano N., and Shioji N. Invariant sets for nonlinear evolution equations, Cauchy problems and periodic problems. Abstr. Appl. Anal. 3 (2004) 183-203
-
(2004)
Abstr. Appl. Anal.
, vol.3
, pp. 183-203
-
-
Hirano, N.1
Shioji, N.2
-
4
-
-
77949488620
-
Periodic solutions for a class of nonlinear evolution equations in Banach spaces
-
Paicu A. Periodic solutions for a class of nonlinear evolution equations in Banach spaces. An. Ştiinţ. "Al. I. Cuza", Iaşi, Ser. Nouǎ Mat. LV (2009) 107-118
-
(2009)
An. Ştiinţ. "Al. I. Cuza", Iaşi, Ser. Nouǎ Mat.
, vol.LV
, pp. 107-118
-
-
Paicu, A.1
-
5
-
-
84966262503
-
Periodic solutions for nonlinear evolution equations in a Banach space
-
Vrabie I.I. Periodic solutions for nonlinear evolution equations in a Banach space. Proc. Amer. Math. Soc. 109 3 (1990) 653-661
-
(1990)
Proc. Amer. Math. Soc.
, vol.109
, Issue.3
, pp. 653-661
-
-
Vrabie, I.I.1
-
7
-
-
34548651633
-
Periodic solutions of evolution problems associated with a moving convex set
-
Castaing C., and Monteiro-Marques D.P. Periodic solutions of evolution problems associated with a moving convex set. C.R. Acad. Sci. Paris, Série A 321 (1995) 531-536
-
(1995)
C.R. Acad. Sci. Paris, Série A
, vol.321
, pp. 531-536
-
-
Castaing, C.1
Monteiro-Marques, D.P.2
-
8
-
-
34548645912
-
Periodic solutions of nonlinear evolution inclusions
-
Lakshmikantham V., and Papageorgiou N.S. Periodic solutions of nonlinear evolution inclusions. Comput. Appl. Math. 52 (1994) 277-286
-
(1994)
Comput. Appl. Math.
, vol.52
, pp. 277-286
-
-
Lakshmikantham, V.1
Papageorgiou, N.S.2
-
9
-
-
34548621057
-
Periodic trajectories for evolution inclusions associated with time-dependent subdifferentials
-
Papageorgiou N.S. Periodic trajectories for evolution inclusions associated with time-dependent subdifferentials. Ann. Univ. Sci. Budapest. 37 (1994) 139-155
-
(1994)
Ann. Univ. Sci. Budapest.
, vol.37
, pp. 139-155
-
-
Papageorgiou, N.S.1
-
10
-
-
0001012236
-
On the existence of periodic solutions for a class of nonlinear inclusions
-
Shuchuan H., and Papageorgiou N.S. On the existence of periodic solutions for a class of nonlinear inclusions. Boll. Unione Mat. Ital. 71 (1993) 591-605
-
(1993)
Boll. Unione Mat. Ital.
, vol.71
, pp. 591-605
-
-
Shuchuan, H.1
Papageorgiou, N.S.2
-
11
-
-
34548643188
-
Periodic solutions for a class of differential inclusions in general Banach spaces
-
Paicu A. Periodic solutions for a class of differential inclusions in general Banach spaces. J. Math. Anal. Appl. 337 (2008) 1238-1248
-
(2008)
J. Math. Anal. Appl.
, vol.337
, pp. 1238-1248
-
-
Paicu, A.1
-
13
-
-
44949272606
-
Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems
-
Byszewski L. Theorems about the existence and uniqueness of solutions of semilinear evolution nonlocal Cauchy problems. J. Math. Anal. Appl. 162 (1991) 494-505
-
(1991)
J. Math. Anal. Appl.
, vol.162
, pp. 494-505
-
-
Byszewski, L.1
-
14
-
-
14544294857
-
Nonlinear nonlocal Cauchy problems in Banach spaces
-
Aizicovici S., and Lee H. Nonlinear nonlocal Cauchy problems in Banach spaces. Appl. Math. Lett. 18 (2005) 401-407
-
(2005)
Appl. Math. Lett.
, vol.18
, pp. 401-407
-
-
Aizicovici, S.1
Lee, H.2
-
15
-
-
0034140628
-
Existence results for a class of abstract nonlocal Cauchy problems
-
Aizicovici S., and McKibben M. Existence results for a class of abstract nonlocal Cauchy problems. Nonlinear Anal. 39 (2000) 649-668
-
(2000)
Nonlinear Anal.
, vol.39
, pp. 649-668
-
-
Aizicovici, S.1
McKibben, M.2
-
16
-
-
38849123682
-
Multivalued evolution equations with nonlocal initial conditions in Banach spaces
-
Aizicovici S., and Staicu V. Multivalued evolution equations with nonlocal initial conditions in Banach spaces. NoDEA Nonlinear Differential Equations Appl. 14 (2007) 361-376
-
(2007)
NoDEA Nonlinear Differential Equations Appl.
, vol.14
, pp. 361-376
-
-
Aizicovici, S.1
Staicu, V.2
-
17
-
-
34548832257
-
Existence results and asymptotic behaviour for nonlocal abstract Cauchy problems
-
García-Falset J. Existence results and asymptotic behaviour for nonlocal abstract Cauchy problems. J. Math. Anal. Appl. 338 (2008) 639-652
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 639-652
-
-
García-Falset, J.1
-
18
-
-
78650732031
-
Integral solutions to a class of nonlocal evolution equations
-
in press
-
J. García-Falset, S. Reich, Integral solutions to a class of nonlocal evolution equations, Commun. Contemp. Math. (in press).
-
Commun. Contemp. Math
-
-
García-Falset, J.1
Reich, S.2
-
19
-
-
0000297319
-
Exponential decay of solutions of semilinear parabolic equations with initial boundary conditions
-
Deng K. Exponential decay of solutions of semilinear parabolic equations with initial boundary conditions. J. Math. Anal. Appl. 179 (1993) 630-637
-
(1993)
J. Math. Anal. Appl.
, vol.179
, pp. 630-637
-
-
Deng, K.1
-
22
-
-
0001608595
-
Compacité de l'opérateur definissant la solution d'une équation d'évolution non linéaire (d u / d t) + A u ∋ f
-
Baras P. Compacité de l'opérateur definissant la solution d'une équation d'évolution non linéaire (d u / d t) + A u ∋ f. C. R. Acad. Sci. Sér. I Math. 286 (1978) 1113-1116
-
(1978)
C. R. Acad. Sci. Sér. I Math.
, vol.286
, pp. 1113-1116
-
-
Baras, P.1
-
26
-
-
84968504254
-
A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points
-
Glicksberg I.L. A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952) 170-174
-
(1952)
Proc. Amer. Math. Soc.
, vol.3
, pp. 170-174
-
-
Glicksberg, I.L.1
-
29
-
-
0001339063
-
Existence for reaction diffusion systems: A compactness method approach
-
Diaz and J.I., and Vrabie I.I. Existence for reaction diffusion systems: A compactness method approach. J. Math. Anal. Appl. 188 (1994) 521-540
-
(1994)
J. Math. Anal. Appl.
, vol.188
, pp. 521-540
-
-
Diaz and, J.I.1
Vrabie, I.I.2
|