메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1-10

Generalization problem in ASR acoustic model training and adaptation

Author keywords

[No Author keywords available]

Indexed keywords

ACOUSTIC MODEL; APRIORI; AUTOMATIC SPEECH RECOGNITION SYSTEM; DATA SPARSENESS PROBLEM; DECISION BOUNDARY; DEGREE OF FREEDOM; LARGE-SCALE DATABASE; MODEL TRAINING; RECOGNITION ACCURACY; RESEARCH ISSUES; SPEECH DATA; SPEECH DATABASE; STATISTICAL MODELS; TRAINING SAMPLE;

EID: 77949431571     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ASRU.2009.5373493     Document Type: Conference Paper
Times cited : (12)

References (78)
  • 1
    • 0030362995 scopus 로고    scopus 로고
    • T. Anastasakos, J. McDonough, R. Schwarts, and J. Makhoul, A compact model for speaker-adaptive training, Proc. ICSLP96, 2, FrP2L1.3, 1996.
    • T. Anastasakos, J. McDonough, R. Schwarts, and J. Makhoul, "A compact model for speaker-adaptive training," Proc. ICSLP96, 2, FrP2L1.3, 1996.
  • 2
    • 53049085888 scopus 로고    scopus 로고
    • Impact of variabilities on speech recognition
    • St Petersburg, pp
    • M. Benzeghiba, et al., "Impact of variabilities on speech recognition," Proc. SPECOM, St Petersburg, pp. 3-16, 2006.
    • (2006) Proc. SPECOM , pp. 3-16
    • Benzeghiba, M.1
  • 3
    • 7544247107 scopus 로고    scopus 로고
    • Graphical models and automatic speech recognition,
    • Technical Report UWEETR-2001-05, University of Washington, Dept. of EE, Seattle WA
    • J. Bilmes, "Graphical models and automatic speech recognition," Technical Report UWEETR-2001-05, University of Washington, Dept. of EE, Seattle WA, 2001.
    • (2001)
    • Bilmes, J.1
  • 4
    • 0141476902 scopus 로고    scopus 로고
    • Eigenspace-based maximum a posteriori linear regression for rapid speaker adaptation
    • K. Chen and H. Wang, "Eigenspace-based maximum a posteriori linear regression for rapid speaker adaptation," Proc. ICASSP, p3.2, 2001.
    • (2001) Proc. ICASSP
    • Chen, K.1    Wang, H.2
  • 5
    • 85135272864 scopus 로고    scopus 로고
    • Maximum a posteriori linear regression for hidden Markov model adaptation
    • C. Chesta, O. Siohan, and C. Lee, "Maximum a posteriori linear regression for hidden Markov model adaptation," Proc. Eurospeech, 1, pp. 211-214, 1999.
    • (1999) Proc. Eurospeech , vol.1 , pp. 211-214
    • Chesta, C.1    Siohan, O.2    Lee, C.3
  • 7
    • 0030189744 scopus 로고    scopus 로고
    • Speaker adaptation using combined transformation and Bayesian methods
    • V. V. Digalakis and L.G. Neumeyer, "Speaker adaptation using combined transformation and Bayesian methods," IEEE Trans, Speech Audio Processing, 4, pp. 294-300, 1996.
    • (1996) IEEE Trans, Speech Audio Processing , vol.4 , pp. 294-300
    • Digalakis, V.V.1    Neumeyer, L.G.2
  • 10
    • 0019009839 scopus 로고
    • A training procedure for isolated word recognition systems
    • S. Furui, "A training procedure for isolated word recognition systems," IEEE Trans. Acoustics, Speech and Signal Processing, 28, 2, pp. 129-136, 1980.
    • (1980) IEEE Trans. Acoustics, Speech and Signal Processing , vol.28 , Issue.2 , pp. 129-136
    • Furui, S.1
  • 11
    • 0024931681 scopus 로고
    • Unsupervised speaker adaptation based on hierarchical spectral clustering
    • S. Furui, "Unsupervised speaker adaptation based on hierarchical spectral clustering," IEEE Trans. Acoustics, Speech and Signal Processing, 37, 12, pp. 1923-1930, 1989.
    • (1989) IEEE Trans. Acoustics, Speech and Signal Processing , vol.37 , Issue.12 , pp. 1923-1930
    • Furui, S.1
  • 12
    • 35648959598 scopus 로고    scopus 로고
    • 50 years of progress in speech and speaker recognition
    • Patras, Greece, pp
    • S. Furui, "50 years of progress in speech and speaker recognition," Proc. SPECOM, Patras, Greece, pp. 1-9, 2005.
    • (2005) Proc. SPECOM , pp. 1-9
    • Furui, S.1
  • 13
    • 24144440468 scopus 로고    scopus 로고
    • Recent progress in corpus-based spontaneous speech recognition
    • S. Furui, "Recent progress in corpus-based spontaneous speech recognition," IEICE Trans. Information and Systems, E88-D, 3, pp.366-375, 2005.
    • (2005) IEICE Trans. Information and Systems , vol.E88-D , Issue.3 , pp. 366-375
    • Furui, S.1
  • 14
    • 70450205164 scopus 로고    scopus 로고
    • Selected topics from 40 years of research on speech and speaker recognition
    • S. Furui, "Selected topics from 40 years of research on speech and speaker recognition," Proc. Interspeech, Brighton, UK, Mon-Ses1-K, 2009.
    • (2009) Proc. Interspeech, Brighton, UK, Mon-Ses1-K
    • Furui, S.1
  • 17
    • 0003940203 scopus 로고    scopus 로고
    • The generation and use of regression class trees for MLLR adaptation
    • Cambridge University Engineering Department
    • M. J. F. Gales, "The generation and use of regression class trees for MLLR adaptation," CUED/F-INFENG/TR263, Cambridge University Engineering Department, 1996.
    • (1996) CUED/F-INFENG/TR263
    • Gales, M.J.F.1
  • 18
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMM-based speech recognition
    • M. J. F. Gales, "Maximum likelihood linear transformations for HMM-based speech recognition," Computer, Speech and Language, 12, pp. 75-98, 1998.
    • (1998) Computer, Speech and Language , vol.12 , pp. 75-98
    • Gales, M.J.F.1
  • 19
    • 85128364359 scopus 로고    scopus 로고
    • Cluster adaptive training for speech recognition
    • M. J. F. Gales, "Cluster adaptive training for speech recognition," Proc. ICSLP, pp. 1783-1786, 1998.
    • (1998) Proc. ICSLP , pp. 1783-1786
    • Gales, M.J.F.1
  • 20
    • 33846263902 scopus 로고    scopus 로고
    • Acoustic factorization
    • Madonna di Campiglio, Italy
    • M. J. F. Gales, "Acoustic factorization," Proc. ASRU 2001, Madonna di Campiglio, Italy, 2001.
    • (2001) Proc. ASRU
    • Gales, M.J.F.1
  • 21
    • 0030263447 scopus 로고    scopus 로고
    • Mean and variance adaptation within the MLLR framework
    • M. J. F. Gales and P. C. Woodland, "Mean and variance adaptation within the MLLR framework," Computer Speech and Language, 10, pp. 249-264, 1996.
    • (1996) Computer Speech and Language , vol.10 , pp. 249-264
    • Gales, M.J.F.1    Woodland, P.C.2
  • 22
    • 70349227947 scopus 로고    scopus 로고
    • The application of hidden Markov models in speech recognition
    • Foundations and Trends in Signal Processing, 1, 3, pp
    • M. J. F. Gales and S. J. Young, "The application of hidden Markov models in speech recognition," Foundations and Trends in Signal Processing, 1, 3, pp. 195-304, 2007.
    • (2007) , pp. 195-304
    • Gales, M.J.F.1    Young, S.J.2
  • 23
    • 0028419019 scopus 로고
    • Maximum a posteriori estimation for multivariate Gaussian mixture observation of Markov chains
    • J.-L. Gauvain and C.-H. Lee, "Maximum a posteriori estimation for multivariate Gaussian mixture observation of Markov chains," IEEE Trans. Speech, Audio Process, 2, 2, pp.291-298, 1994.
    • (1994) IEEE Trans. Speech, Audio Process , vol.2 , Issue.2 , pp. 291-298
    • Gauvain, J.-L.1    Lee, C.-H.2
  • 24
    • 50949102392 scopus 로고    scopus 로고
    • Discriminative learning in speech recognition,
    • Technical Report, MSR-TR-2007-129, Microsoft, 2007
    • X.-D. He and L. Deng, "Discriminative learning in speech recognition," Technical Report, MSR-TR-2007-129, Microsoft, 2007.
    • He, X.-D.1    Deng, L.2
  • 26
    • 0032122203 scopus 로고    scopus 로고
    • On-line adaptive learning of the correlated continuous-density hidden Markov model for speech recognition
    • Q. Huo and C.-H. Lee, "On-line adaptive learning of the correlated continuous-density hidden Markov model for speech recognition," IEEE Trans. Speech Audio Processing, 6, pp. 386-397, 1998.
    • (1998) IEEE Trans. Speech Audio Processing , vol.6 , pp. 386-397
    • Huo, Q.1    Lee, C.-H.2
  • 27
    • 15844411850 scopus 로고    scopus 로고
    • Confidence measures for speech recognition: A survey
    • H. Jiang, "Confidence measures for speech recognition: A survey," Speech Communication, 45, pp. 455-470, 2005.
    • (2005) Speech Communication , vol.45 , pp. 455-470
    • Jiang, H.1
  • 28
    • 0026982122 scopus 로고
    • Discriminative learning for minimum error classification
    • B.-H. Juang and S. Katagiri, "Discriminative learning for minimum error classification," IEEE Trans. Signal Processing, 40, 12, pp. 3043-3054, 1992.
    • (1992) IEEE Trans. Signal Processing , vol.40 , Issue.12 , pp. 3043-3054
    • Juang, B.-H.1    Katagiri, S.2
  • 29
    • 85009062725 scopus 로고    scopus 로고
    • Hidden factor dynamic Bayesian networks for speech recognition
    • Jeju Island, Korea
    • F. Korkmazsky, M. Deviren, D. Fohr, and I. Illina, "Hidden factor dynamic Bayesian networks for speech recognition," Proc. ICSLP, Jeju Island, Korea, 2004.
    • (2004) Proc. ICSLP
    • Korkmazsky, F.1    Deviren, M.2    Fohr, D.3    Illina, I.4
  • 30
    • 0346321291 scopus 로고
    • Tree-structured speaker clustering for speaker-independent continuous speech recognition
    • Yokohama, pp
    • T. Kosaka, S. Matsunaga and S. Sagayama, "Tree-structured speaker clustering for speaker-independent continuous speech recognition," Proc. ICSLP, Yokohama, pp.1375-1378, 1994.
    • (1994) Proc. ICSLP , pp. 1375-1378
    • Kosaka, T.1    Matsunaga, S.2    Sagayama, S.3
  • 32
    • 77949451199 scopus 로고    scopus 로고
    • Adaptation and compensation for speech recognition - learning from extra data to improve robustness
    • Kyoto, Japan, pp
    • C.-H. Lee, "Adaptation and compensation for speech recognition - learning from extra data to improve robustness," Proc. Int. Workshop on Hands-Free Speech Communication (HSC 2001), Kyoto, Japan, pp. 27-30, 2001.
    • (2001) Proc. Int. Workshop on Hands-Free Speech Communication (HSC , pp. 27-30
    • Lee, C.-H.1
  • 33
    • 0029747183 scopus 로고    scopus 로고
    • Speaker normalization using efficient frequency warping procedures
    • L. Lee and R. C. Rose, "Speaker normalization using efficient frequency warping procedures," Proc. ICASSP, 1, pp.353-356, 1996.
    • (1996) Proc. ICASSP , vol.1 , pp. 353-356
    • Lee, L.1    Rose, R.C.2
  • 34
    • 0029288633 scopus 로고
    • Maximum likelihood linear regression for speaker adaptation of continuous density Hidden Markov Models
    • C. Leggetter and P. Woodland, "Maximum likelihood linear regression for speaker adaptation of continuous density Hidden Markov Models", Computer, Speech and Language, 9, pp. 171-185, 1995.
    • (1995) Computer, Speech and Language , vol.9 , pp. 171-185
    • Leggetter, C.1    Woodland, P.2
  • 35
    • 85009152776 scopus 로고    scopus 로고
    • Speech recognition system robust to noise and speaking styles
    • Jeju Island, Korea
    • S. Matsuda, T. Jitsuhiro, K. Markov, and S. Nakamura, "Speech recognition system robust to noise and speaking styles," Proc. ICSLP, Jeju Island, Korea, 2004.
    • (2004) Proc. ICSLP
    • Matsuda, S.1    Jitsuhiro, T.2    Markov, K.3    Nakamura, S.4
  • 36
    • 3643088089 scopus 로고
    • A study of speaker adaptation based on minimum classification error training
    • Madrid, Spain, pp
    • T. Matsui and S. Furui. "A study of speaker adaptation based on minimum classification error training," Proc. Eurospeech, Madrid, Spain, pp. 81-84, 1995.
    • (1995) Proc. Eurospeech , pp. 81-84
    • Matsui, T.1    Furui, S.2
  • 37
    • 0031681725 scopus 로고    scopus 로고
    • N-best-based unsupervised speaker adaptation for speech recognition
    • T. Matsui and S. Furui, "N-best-based unsupervised speaker adaptation for speech recognition," Computer Speech and Language, 12, pp. 41-50, 1998.
    • (1998) Computer Speech and Language , vol.12 , pp. 41-50
    • Matsui, T.1    Furui, S.2
  • 39
    • 24144432267 scopus 로고    scopus 로고
    • An unsupervised speaker adaptation method for lecture-style spontaneous speech recognition using multiple recognition systems
    • S. Nakagawa, T. Watanabe, H. Nishizaki and T. Utsuro, "An unsupervised speaker adaptation method for lecture-style spontaneous speech recognition using multiple recognition systems," IEICE Trans. Information and Systems, E88-D, 3, pp.463-471, 2005.
    • (2005) IEICE Trans. Information and Systems , vol.E88-D , Issue.3 , pp. 463-471
    • Nakagawa, S.1    Watanabe, T.2    Nishizaki, H.3    Utsuro, T.4
  • 40
    • 0036289926 scopus 로고    scopus 로고
    • Speaking-rate dependent decoding and adaptation for spontaneous lecture speech recognition
    • H. Nanjo and T. Kawahara, "Speaking-rate dependent decoding and adaptation for spontaneous lecture speech recognition," Proc. ICASSP, pp. 725-728, 2002.
    • (2002) Proc. ICASSP , pp. 725-728
    • Nanjo, H.1    Kawahara, T.2
  • 42
    • 0002756136 scopus 로고    scopus 로고
    • Maximum mutual information estimation of hidden Markov models
    • C.-H. Lee, F. K. Soong and K. K. Paliwal eds, Kluwer Academic Publishers, Norwell, MA
    • Y. Normandin, "Maximum mutual information estimation of hidden Markov models," in Automatic Speech and Speaker Recognition, C.-H. Lee, F. K. Soong and K. K. Paliwal eds., Kluwer Academic Publishers, Norwell, MA, 1996.
    • (1996) Automatic Speech and Speaker Recognition
    • Normandin, Y.1
  • 43
    • 85135109228 scopus 로고
    • Speaker adaptation based on transfer-vector-field smoothing with continuous mixture density HMMs
    • Alberta, pp
    • K. Ohkura, M. Sugiyama and S. Sagayama, "Speaker adaptation based on transfer-vector-field smoothing with continuous mixture density HMMs", Proc. ICSLP, Alberta, pp.369-372, 1992.
    • (1992) Proc. ICSLP , pp. 369-372
    • Ohkura, K.1    Sugiyama, M.2    Sagayama, S.3
  • 44
    • 0031704151 scopus 로고    scopus 로고
    • Speaker clustering and transformation for speaker adaptation in speech recognition systems
    • M. Padmanabhan, L. R. Bahl, D. Nahamoo and M. A. Picheny, "Speaker clustering and transformation for speaker adaptation in speech recognition systems," IEEE Trans. Speech Audio Processing, 6, pp. 71-77, 1998.
    • (1998) IEEE Trans. Speech Audio Processing , vol.6 , pp. 71-77
    • Padmanabhan, M.1    Bahl, L.R.2    Nahamoo, D.3    Picheny, M.A.4
  • 47
    • 0036296863 scopus 로고    scopus 로고
    • Minimum phone error and i-smoothing for improved discriminative training
    • Orlando, pp
    • D. Povey and P. C. Woodland, "Minimum phone error and i-smoothing for improved discriminative training," Proc. ICASSP, Orlando, pp. I-105-108, 2002.
    • (2002) Proc. ICASSP
    • Povey, D.1    Woodland, P.C.2
  • 48
    • 0030672082 scopus 로고    scopus 로고
    • Experiments in speaker normalization and adaptation for large vocabulary speech recognition
    • D. Pye and P. C. Woodland, "Experiments in speaker normalization and adaptation for large vocabulary speech recognition," Proc. ICASSP, 2, pp. 1047-1050, 1997.
    • (1997) Proc. ICASSP , vol.2 , pp. 1047-1050
    • Pye, D.1    Woodland, P.C.2
  • 49
    • 0029769867 scopus 로고    scopus 로고
    • Signal bias removal by maximum likelihood estimation for robust telephone speech recognition
    • M. Rahim and B.-H. Juang, "Signal bias removal by maximum likelihood estimation for robust telephone speech recognition," IEEE Trans. Speech, Audio Process., 4, 1, pp.19-30, 1996.
    • (1996) IEEE Trans. Speech, Audio Process , vol.4 , Issue.1 , pp. 19-30
    • Rahim, M.1    Juang, B.-H.2
  • 50
    • 70349199930 scopus 로고    scopus 로고
    • Bayesian discriminative adaptation for speech recognition
    • Taipei, Taiwan, pp
    • C. K. Raut and M. J. Gales, "Bayesian discriminative adaptation for speech recognition," Proc. ICASSP, Taipei, Taiwan, pp. 4361-4364, 2009.
    • (2009) Proc. ICASSP , pp. 4361-4364
    • Raut, C.K.1    Gales, M.J.2
  • 52
    • 0036295942 scopus 로고    scopus 로고
    • Factor analysed hidden Markov models
    • Orlando, pp
    • A-V. I. Rosti and M. J. F. Gales, "Factor analysed hidden Markov models," Proc. ICASSP, Orlando, pp. I-949-952, 2002.
    • (2002) Proc. ICASSP
    • Rosti, A.-V.I.1    Gales, M.J.F.2
  • 53
    • 0347159336 scopus 로고    scopus 로고
    • Analytic methods for acoustic model adaptation: A review
    • Sophia-Antipolis, pp
    • S. Sagayama, K. Shinoda, M. Nakai and H. Shimodaira, "Analytic methods for acoustic model adaptation: a review," Proc. ISCA ITR-Workshop, Sophia-Antipolis, pp.67-76, 2001.
    • (2001) Proc. ISCA ITR-Workshop , pp. 67-76
    • Sagayama, S.1    Shinoda, K.2    Nakai, M.3    Shimodaira, H.4
  • 55
    • 84867211272 scopus 로고    scopus 로고
    • Penalty function maximization for large margin HMM training
    • Brisbane, Australia, pp
    • G. Saon and D. Povey, "Penalty function maximization for large margin HMM training," Proc. Interspeech, Brisbane, Australia, pp. 920-923, 2008.
    • (2008) Proc. Interspeech , pp. 920-923
    • Saon, G.1    Povey, D.2
  • 56
    • 0026384360 scopus 로고
    • Speaker adaptation for demisyllable based continuous density HMM
    • K. Shinoda, K. Iso, and T. Watanabe, "Speaker adaptation for demisyllable based continuous density HMM," Proc. ICASSP, S13.7, pp. 857-860, 1991.
    • (1991) Proc. ICASSP, S13.7 , pp. 857-860
    • Shinoda, K.1    Iso, K.2    Watanabe, T.3
  • 57
    • 0035279111 scopus 로고    scopus 로고
    • A structural Bayes approach to speaker adaptation
    • K. Shinoda and C.-H. Lee, "A structural Bayes approach to speaker adaptation," IEEE Trans. Speech, Audio Process., 9, 3, pp. 276-287, 2001.
    • (2001) IEEE Trans. Speech, Audio Process , vol.9 , Issue.3 , pp. 276-287
    • Shinoda, K.1    Lee, C.-H.2
  • 58
    • 0002488301 scopus 로고
    • Speaker adaptation with autonomous control using tree structure
    • K. Shinoda and T. Watanabe, "Speaker adaptation with autonomous control using tree structure," Proc. Eurospeech, pp. 1143-1146, 1995.
    • (1995) Proc. Eurospeech , pp. 1143-1146
    • Shinoda, K.1    Watanabe, T.2
  • 59
    • 0029747193 scopus 로고    scopus 로고
    • Speaker adaptation with autonomous model complexity control by MDL principle
    • K. Shinoda and T. Watanabe, "Speaker adaptation with autonomous model complexity control by MDL principle," Proc. ICASSP, pp.717-720, 1996.
    • (1996) Proc. ICASSP , pp. 717-720
    • Shinoda, K.1    Watanabe, T.2
  • 60
    • 33645586600 scopus 로고    scopus 로고
    • Hidden mode HMM using bayesian network for modeling speaking rate fluctuation
    • US Virgin Islands, pp
    • T. Shinozaki and S. Furui, "Hidden mode HMM using bayesian network for modeling speaking rate fluctuation," Proc. of ASRU, US Virgin Islands, pp.417-422, 2003.
    • (2003) Proc. of ASRU , pp. 417-422
    • Shinozaki, T.1    Furui, S.2
  • 61
    • 85009168871 scopus 로고    scopus 로고
    • Time adjustable mixture weights for speaking rate fluctuation
    • T. Shinozaki and S. Furui, "Time adjustable mixture weights for speaking rate fluctuation," Proc. Eurospeech, pp. 973-976, 2003.
    • (2003) Proc. Eurospeech , pp. 973-976
    • Shinozaki, T.1    Furui, S.2
  • 62
    • 85009080958 scopus 로고    scopus 로고
    • Spontaneous speech recognition using a massively parallel decoder
    • Jeju Island, Korea, pp
    • T. Shinozaki and S. Furui, "Spontaneous speech recognition using a massively parallel decoder," Proc. ICSLP, Jeju Island, Korea, pp. 1705-1708, 2004.
    • (2004) Proc. ICSLP , pp. 1705-1708
    • Shinozaki, T.1    Furui, S.2
  • 63
    • 70349220091 scopus 로고    scopus 로고
    • Unsupervised cross-validation adaptation algorithms for improved adaptation performance
    • Taipei, Taiwan, pp
    • T. Shinozaki, Y. Kubota and S. Furui, "Unsupervised cross-validation adaptation algorithms for improved adaptation performance," Proc. IEEE ICASSP, Taipei, Taiwan, pp. 4377-4380, 2009.
    • (2009) Proc. IEEE ICASSP , pp. 4377-4380
    • Shinozaki, T.1    Kubota, Y.2    Furui, S.3
  • 64
    • 77949467478 scopus 로고    scopus 로고
    • Unsupervised cross-validation and aggregated adaptations for improved speech recognition,
    • 2009-SLP-75, pp, in Japanese
    • T. Shinozaki, Y. Kubota and S. Furui, "Unsupervised cross-validation and aggregated adaptations for improved speech recognition," IPSJ SIG Technical Report, 2009-SLP-75, pp. 1-6, 2009. (in Japanese)
    • (2009) IPSJ SIG Technical Report , pp. 1-6
    • Shinozaki, T.1    Kubota, Y.2    Furui, S.3
  • 65
    • 77949447451 scopus 로고    scopus 로고
    • Y. Shiraki and M. Honda, Speaker adaptations algorithms for segment vocoder, Trans, Committee of Speech Res., Acoust. Soc. Japan, SP87-67, 1987. (in Japanese)
    • Y. Shiraki and M. Honda, "Speaker adaptations algorithms for segment vocoder," Trans, Committee of Speech Res., Acoust. Soc. Japan, SP87-67, 1987. (in Japanese)
  • 68
    • 0034818518 scopus 로고    scopus 로고
    • Transformation-based Bayesian prediction for adaptation of HMMs
    • A. C. Surendran and C.-H. Lee, "Transformation-based Bayesian prediction for adaptation of HMMs," Speech Communication, 34, pp. 159-174, 2001.
    • (2001) Speech Communication , vol.34 , pp. 159-174
    • Surendran, A.C.1    Lee, C.-H.2
  • 69
    • 0028997003 scopus 로고
    • Vector-field-smoothed Bayesian learning for incremental speaker adaptation
    • Detroit, pp
    • J. Takahashi and S. Sagayama, "Vector-field-smoothed Bayesian learning for incremental speaker adaptation," Proc. ICASSP, Detroit, pp. 696-699, 1995.
    • (1995) Proc. ICASSP , pp. 696-699
    • Takahashi, J.1    Sagayama, S.2
  • 70
    • 0028997002 scopus 로고
    • Speaker adaptation based on transfer-vector-field-smoothing using maximum a posteriori probability estimation
    • Detroit, pp
    • M. Tonomura, T. Kosaka, and S. Matsunaga, "Speaker adaptation based on transfer-vector-field-smoothing using maximum a posteriori probability estimation," Proc. ICASSP, Detroit, pp. 688-691, 1995.
    • (1995) Proc. ICASSP , pp. 688-691
    • Tonomura, M.1    Kosaka, T.2    Matsunaga, S.3
  • 71
    • 0017482612 scopus 로고
    • Normalization of vowels by vocal tract length and its application to vowel identification
    • H. Wakita, "Normalization of vowels by vocal tract length and its application to vowel identification," IEEE Trans. Acoustics, Speech and Signal Processing, 25, 2, pp. 183-192, 1977.
    • (1977) IEEE Trans. Acoustics, Speech and Signal Processing , vol.25 , Issue.2 , pp. 183-192
    • Wakita, H.1
  • 72
    • 40149091397 scopus 로고    scopus 로고
    • MPE-based discriminative linear transforms for speaker adaptation
    • L. Wang and P. C. Woodland, "MPE-based discriminative linear transforms for speaker adaptation," Computer Speech and Language, 22, 3, pp. 256-272, 2008.
    • (2008) Computer Speech and Language , vol.22 , Issue.3 , pp. 256-272
    • Wang, L.1    Woodland, P.C.2
  • 73
    • 0002867698 scopus 로고    scopus 로고
    • Large scale discriminative training for speech recognition
    • P. Woodland and D. Povey, "Large scale discriminative training for speech recognition," Proc. ITRW ASR, 2000.
    • (2000) Proc. ITRW ASR
    • Woodland, P.1    Povey, D.2
  • 74
    • 42949105203 scopus 로고    scopus 로고
    • Large-margin minimum classification error training: A theoretical risk minimization perspective
    • D. Yu, L. Deng, X.-D. He and A. Acero, "Large-margin minimum classification error training: A theoretical risk minimization perspective," Computer Speech and Language, 22, pp. 415-429, 2008.
    • (2008) Computer Speech and Language , vol.22 , pp. 415-429
    • Yu, D.1    Deng, L.2    He, X.-D.3    Acero, A.4
  • 76
    • 51449121023 scopus 로고    scopus 로고
    • Unsupervised discriminative adaptation using discriminative mapping transforms
    • K. Yu, M. J. F. Gales, and P. C. Woodland, "Unsupervised discriminative adaptation using discriminative mapping transforms," Proc. ICASSP, pp. 4273-4276, 2008.
    • (2008) Proc. ICASSP , pp. 4273-4276
    • Yu, K.1    Gales, M.J.F.2    Woodland, P.C.3
  • 77
    • 0028996999 scopus 로고
    • Batch, incremental and instantaneous adaptation techniques for speech recognition
    • Detroit, pp
    • G. Zavaliagkos, R. Schwartz, and J. McDonough, "Batch, incremental and instantaneous adaptation techniques for speech recognition" Proc. ICASSP, Detroit, pp. 676-679, 1995.
    • (1995) Proc. ICASSP , pp. 676-679
    • Zavaliagkos, G.1    Schwartz, R.2    McDonough, J.3
  • 78
    • 0004158153 scopus 로고    scopus 로고
    • Speech recognition with dynamic Bayesian networks,
    • Ph.D. Thesis, University of California, Berkeley
    • G. Zweig, "Speech recognition with dynamic Bayesian networks," Ph.D. Thesis, University of California, Berkeley, 1998.
    • (1998)
    • Zweig, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.