메뉴 건너뛰기




Volumn 29, Issue 7-8, 2010, Pages 770-777

Bias-reduced and separation-proof conditional logistic regression with small or sparse data sets

Author keywords

Bias reduction; Case control studies; Infinite estimates; Modified score function; Monotone likelihood; Penalized likelihood

Indexed keywords

ARTICLE; CASE CONTROL STUDY; COMPUTER PROGRAM; CONFIDENCE INTERVAL; LOGISTIC REGRESSION ANALYSIS; MATHEMATICAL PARAMETERS; SIMULATION;

EID: 77949375519     PISSN: 02776715     EISSN: 10970258     Source Type: Journal    
DOI: 10.1002/sim.3794     Document Type: Article
Times cited : (97)

References (27)
  • 1
    • 0000154003 scopus 로고
    • Statistical Methods in Cancer Research
    • IARC Scientific Publications: Lyon
    • Breslow NE, Day NE. Statistical Methods in Cancer Research. Volume 1: The Analysis of Case-Control Studies. IARC Scientific Publications: Lyon, 1980.
    • (1980) The Analysis of Case-Control Studies , vol.1
    • Breslow, N.E.1    Day, N.E.2
  • 2
    • 0034159815 scopus 로고    scopus 로고
    • Problems due to small samples and sparse data in conditional logistic regression analysis
    • Greenland S, Schwartzbaum JA, Finkle WD. Problems due to small samples and sparse data in conditional logistic regression analysis. American Journal of Epidemiology 2000; 151:531-539.
    • (2000) American Journal of Epidemiology , vol.151 , pp. 531-539
    • Greenland, S.1    Schwartzbaum, J.A.2    Finkle, W.D.3
  • 3
    • 0000555876 scopus 로고    scopus 로고
    • Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators
    • DOI: 10.1093/biostatistics/1.1.113
    • Greenland S. Small-sample bias and corrections for conditional maximum-likelihood odds-ratio estimators. Biostatistics 2000; 1:113-122. DOI: 10.1093/biostatistics/1.1.113.
    • (2000) Biostatistics , vol.1 , pp. 113-122
    • Greenland, S.1
  • 4
    • 0023726130 scopus 로고
    • Exact inference for matched case-control studies
    • DOI: 10.2307/2531592
    • Hirji KF, Mehta CR, Patel NR. Exact inference for matched case-control studies. Biometrics 1988; 44:803-814. DOI: 10.2307/2531592.
    • (1988) Biometrics , vol.44 , pp. 803-814
    • Hirji, K.F.1    Mehta, C.R.2    Patel, N.R.3
  • 5
    • 0037199788 scopus 로고    scopus 로고
    • A solution to the problem of separation in logistic regression
    • DOI: 10.1002/sim.1047
    • Heinze G, Schemper M. A solution to the problem of separation in logistic regression. Statistics in Medicine 2002; 21:2409-2419. DOI: 10.1002/sim.1047.
    • (2002) Statistics in Medicine , vol.21 , pp. 2409-2419
    • Heinze, G.1    Schemper, M.2
  • 6
  • 7
    • 0025919473 scopus 로고
    • A comparison of exact, mid-p, and score tests for matched case-control studies
    • DOI: 10.2307/2532140
    • Hirji KF. A comparison of exact, mid-p, and score tests for matched case-control studies. Biometrics 1991; 47:487-496. DOI: 10.2307/2532140.
    • (1991) Biometrics , vol.47 , pp. 487-496
    • Hirji, K.F.1
  • 8
    • 0029022967 scopus 로고
    • Exact logistic regression: Theory and examples
    • DOI: 10.1002/sim.4780141908
    • Mehta CR, Patel NR. Exact logistic regression: theory and examples. Statistics in Medicine 1995; 14:2143-2160. DOI: 10.1002/sim.4780141908.
    • (1995) Statistics in Medicine , vol.14 , pp. 2143-2160
    • Mehta, C.R.1    Patel, N.R.2
  • 9
    • 0003105664 scopus 로고    scopus 로고
    • Improving on exact tests by approximate conditioning
    • DOI: 10.1093/biomet/86.2.265
    • Pierce DA, Peters D. Improving on exact tests by approximate conditioning. Biometrika 1999; 86:265-277. DOI: 10.1093/biomet/86.2.265.
    • (1999) Biometrika , vol.86 , pp. 265-277
    • Pierce, D.A.1    Peters, D.2
  • 10
    • 0002178053 scopus 로고
    • Bias reduction of maximum likelihood estimates
    • DOI: 10.1093/biomet/80.1.27
    • Firth D. Bias reduction of maximum likelihood estimates. Biometrika 1993; 80:27-38. DOI: 10.1093/biomet/80.1.27.
    • (1993) Biometrika , vol.80 , pp. 27-38
    • Firth, D.1
  • 11
    • 77949399810 scopus 로고    scopus 로고
    • Cytel Software Corporation, Cytel: Cambridge, MA
    • Cytel Software Corporation. LogXact 7 Manual. Cytel: Cambridge, MA, 2005.
    • (2005) LogXact 7 Manual
  • 12
    • 63549149056 scopus 로고    scopus 로고
    • SAS Institute Inc, Cary, NC, Available from:, 12 October 2009
    • SAS Institute Inc. SAS/STAT 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/ statug/59654/PDF/default/statug.pdf [12 October 2009].
    • (2008) SAS/STAT 9.2 User's Guide
  • 14
    • 0003508724 scopus 로고    scopus 로고
    • Hosmer DW, Lemeshow S. Applied Logistic Regression (2nd edn). Wiley: New York, NY, U.S.A., 2000. DOI: 10.1002/0471722146.
    • Hosmer DW, Lemeshow S. Applied Logistic Regression (2nd edn). Wiley: New York, NY, U.S.A., 2000. DOI: 10.1002/0471722146.
  • 16
    • 33845900763 scopus 로고    scopus 로고
    • A comparative investigation of methods for logistic regression with separated or nearly separated data
    • DOI: 10.1002/sim.2687
    • Heinze G. A comparative investigation of methods for logistic regression with separated or nearly separated data. Statistics in Medicine 2006; 25:4216-4226. DOI: 10.1002/sim.2687.
    • (2006) Statistics in Medicine , vol.25 , pp. 4216-4226
    • Heinze, G.1
  • 17
    • 0037187858 scopus 로고    scopus 로고
    • A modified score function estimator for multinomial logistic regression in small samples
    • DOI: 10.1016/S0167-9473(01)00048-2
    • Bull S, Mak C, Greenwod CMT. A modified score function estimator for multinomial logistic regression in small samples. Computational Statistics and Data Analysis 2002; 39:57-74. DOI: 10.1016/S0167-9473(01)00048-2.
    • (2002) Computational Statistics and Data Analysis , vol.39 , pp. 57-74
    • Bull, S.1    Mak, C.2    Greenwod, C.M.T.3
  • 18
    • 33846805720 scopus 로고    scopus 로고
    • Confidence intervals for multinomial logistic regression in sparse data
    • DOI: 10.1002/sim.2518
    • Bull SB, Lewinger JP, Lee SSF. Confidence intervals for multinomial logistic regression in sparse data. Statistics in Medicine 2007; 26:903-918. DOI: 10.1002/sim.2518.
    • (2007) Statistics in Medicine , vol.26 , pp. 903-918
    • Bull, S.B.1    Lewinger, J.P.2    Lee, S.S.F.3
  • 19
    • 0035099124 scopus 로고    scopus 로고
    • A solution to the problem of monotone likelihood in Cox regression
    • DOI: 10.1111/j.0006-341X.2001.00114.x
    • Heinze G, Schemper M. A solution to the problem of monotone likelihood in Cox regression. Biometrics 2001; 57:114-119. DOI: 10.1111/j.0006-341X.2001.00114.x.
    • (2001) Biometrics , vol.57 , pp. 114-119
    • Heinze, G.1    Schemper, M.2
  • 20
    • 63249086305 scopus 로고    scopus 로고
    • Avoiding infinite estimates of time-dependent effects in small-sample survival studies
    • DOI: 10.1002/sim.3418
    • Heinze G, Dunkler D. Avoiding infinite estimates of time-dependent effects in small-sample survival studies. Statistics in Medicine 2008; 27:6455-6469. DOI: 10.1002/sim.3418.
    • (2008) Statistics in Medicine , vol.27 , pp. 6455-6469
    • Heinze, G.1    Dunkler, D.2
  • 22
    • 0038634705 scopus 로고    scopus 로고
    • Fixing the nonconvergence bug in logistic regression with SPLUS and SAS
    • DOI: 10.1016/S0169-2607(02)00088-3
    • Heinze G, Ploner M. Fixing the nonconvergence bug in logistic regression with SPLUS and SAS. Computer Methods and Programs in Biomedicine 2003; 71:181-187. DOI: 10.1016/S0169-2607(02)00088-3.
    • (2003) Computer Methods and Programs in Biomedicine , vol.71 , pp. 181-187
    • Heinze, G.1    Ploner, M.2
  • 24
    • 61449096231 scopus 로고    scopus 로고
    • SAS Institute Inc, Cary, NC, Available from:, 12 October 2009
    • SAS Institute Inc. SAS/IML 9.2 User's Guide. SAS Institute Inc.: Cary, NC, 2008. Available from: http://support.sas.com/documentation/cdl/en/ imlug/59656/PDF/default/imlug.pdf [12 October 2009].
    • (2008) SAS/IML 9.2 User's Guide
  • 26
    • 77949348492 scopus 로고    scopus 로고
    • Kuss O. How to use SAS® for Logistic Regression with Correlated Data. Proceedings of the 27th Annual SAS® Users Group International Conference (SUGI 27), 261-27, Orlando, FL, U.S.A., 2002; 1-5. Available from: http://www2.sas.com/proceedings/sugi27/p261-27.pdf [12 October 2009].
    • Kuss O. How to use SAS® for Logistic Regression with Correlated Data. Proceedings of the 27th Annual SAS® Users Group International Conference (SUGI 27), 261-27, Orlando, FL, U.S.A., 2002; 1-5. Available from: http://www2.sas.com/proceedings/sugi27/p261-27.pdf [12 October 2009].
  • 27
    • 77949378871 scopus 로고    scopus 로고
    • Ph.D. Thesis, The University of Warwick, Warwick, U.K, Available from:, 12 October
    • Kosmidis I. Bias reduction in exponential family nonlinear models. Ph.D. Thesis, The University of Warwick, Warwick, U.K., 2007. Available from: http://www2.warwick.ac.uk/fac/sci/statistics/staff/research/ioannis- kosmidis/ikosmidis-thesis/ikosmidis-thesis.pdf [12 October 2009].
    • (2007) Bias reduction in exponential family nonlinear models
    • Kosmidis, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.