메뉴 건너뛰기




Volumn 55, Issue 4, 2010, Pages 365-372

Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles

Author keywords

Arsenic; Immobilization; Iron; Nanoparticle; Soil pollution; Soil remediation

Indexed keywords


EID: 77949301839     PISSN: 10016538     EISSN: 18619541     Source Type: Journal    
DOI: 10.1007/s11434-009-0703-4     Document Type: Article
Times cited : (111)

References (49)
  • 1
    • 0035874759 scopus 로고    scopus 로고
    • An analysis of soil arsenic records of decision
    • Davis A, Sherwin D, Ditmars R, et al. An analysis of soil arsenic records of decision. Environ Sci Technol, 2001, 35: 2401-2406.
    • (2001) Environ Sci Technol , vol.35 , pp. 2401-2406
    • Davis, A.1    Sherwin, D.2    Ditmars, R.3
  • 2
    • 8744249169 scopus 로고    scopus 로고
    • Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead
    • Fendorf S, La Force M J, Li G C. Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium, and lead. J Environ Qual, 2004, 33: 2049-2055.
    • (2004) J Environ Qual , vol.33 , pp. 2049-2055
    • Fendorf, S.1    La force, M.J.2    Li, G.C.3
  • 3
    • 0000874895 scopus 로고    scopus 로고
    • Arsenic in the soil environment: A review
    • Smith E, Naidu R, Alston A M. Arsenic in the soil environment: A review. Adv Agron, 1998, 64: 149-195.
    • (1998) Adv Agron , vol.64 , pp. 149-195
    • Smith, E.1    Naidu, R.2    Alston, A.M.3
  • 4
    • 0029669346 scopus 로고    scopus 로고
    • Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils
    • Davis A, Ruby M V, Bloom M, et al. Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils. Environ Sci Technol, 1996, 30: 392-399.
    • (1996) Environ Sci Technol , vol.30 , pp. 392-399
    • Davis, A.1    Ruby, M.V.2    Bloom, M.3
  • 5
    • 0042691310 scopus 로고    scopus 로고
    • Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility
    • Dixit S, Hering J G. Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ Sci Technol, 2003, 37: 4182-4189.
    • (2003) Environ Sci Technol , vol.37 , pp. 4182-4189
    • Dixit, S.1    Hering, J.G.2
  • 6
    • 0036591785 scopus 로고    scopus 로고
    • Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate
    • Ford R G. Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. Environ Sci Technol, 2002, 36: 2459-2463.
    • (2002) Environ Sci Technol , vol.36 , pp. 2459-2463
    • Ford, R.G.1
  • 7
    • 0027449621 scopus 로고
    • Surface-chemistry of ferrihydrite 2. Kinetics of arsenate adsorption and coprecipitation
    • Fuller C C, Davis J A, Waychunas G A. Surface-chemistry of ferrihydrite 2. Kinetics of arsenate adsorption and coprecipitation. Geochim Cosmochim Acta, 1993, 57: 2271-2282.
    • (1993) Geochim Cosmochim Acta , vol.57 , pp. 2271-2282
    • Fuller, C.C.1    Davis, J.A.2    Waychunas, G.A.3
  • 8
    • 0030618816 scopus 로고    scopus 로고
    • Arsenate and chromate retention mechanisms on goethite.2. Kinetic evaluation using a pressure-jump relaxation technique
    • Grossl P R, Eick M, Sparks D L, et al. Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environ Sci Technol, 1997, 31: 321-326.
    • (1997) Environ Sci Technol , vol.31 , pp. 321-326
    • Grossl, P.R.1    Eick, M.2    Sparks, D.L.3
  • 9
    • 0033560776 scopus 로고    scopus 로고
    • Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH-release stoichiometry
    • Jain A, Raven K P, Loeppert R H. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH-release stoichiometry. Environ Sci Technol, 1999, 33: 1179-1184.
    • (1999) Environ Sci Technol , vol.33 , pp. 1179-1184
    • Jain, A.1    Raven, K.P.2    Loeppert, R.H.3
  • 10
    • 0001350364 scopus 로고
    • The mechanism of anion adsorption on iron-oxides evidence for the bonding of arsenate tetrahedra on free Fe(O,OH) edges
    • Manceau A. The mechanism of anion adsorption on iron-oxides evidence for the bonding of arsenate tetrahedra on free Fe(O, OH) edges. Geochim Cosmochim Acta, 1995, 59: 3647-3653.
    • (1995) Geochim Cosmochim Acta , vol.59 , pp. 3647-3653
    • Manceau, A.1
  • 11
    • 0242624799 scopus 로고    scopus 로고
    • Surface complexation of arsenie(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy
    • Sherman D M, Randall S R. Surface complexation of arsenie(V) to iron(III) (hydr)oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy. Geochim Cosmochim Acta, 2003, 67: 4223-4230.
    • (2003) Geochim Cosmochim Acta , vol.67 , pp. 4223-4230
    • Sherman, D.M.1    Randall, S.R.2
  • 12
    • 0000962858 scopus 로고
    • Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH-reevaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes
    • Waychunas G A, Davis J A, Fuller C C. Geometry of sorbed arsenate on ferrihydrite and crystalline FeOOH-reevaluation of EXAFS results and topological factors in predicting sorbate geometry, and evidence for monodentate complexes. Geochim Cosmochim Acta, 1995, 59: 3655-3661.
    • (1995) Geochim Cosmochim Acta , vol.59 , pp. 3655-3661
    • Waychunas, G.A.1    Davis, J.A.2    Fuller, C.C.3
  • 13
    • 0027492678 scopus 로고
    • Surface-chemistry of ferrihydrite. 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate
    • Waychunas G A, Rea B A, Fuller C C, et al. Surface-chemistry of ferrihydrite. 1. EXAFS studies of the geometry of coprecipitated and adsorbed arsenate. Geochim Cosmochim Acta, 1993, 57: 2251-2269.
    • (1993) Geochim Cosmochim Acta , vol.57 , pp. 2251-2269
    • Waychunas, G.A.1    Rea, B.A.2    Fuller, C.C.3
  • 14
    • 33144472491 scopus 로고    scopus 로고
    • Bioaccessibility of arsenic (V) bound to ferrihydrite using a simulated gastrointestinal system
    • Beak D G, Basta N T, Scheckel K G, et al. Bioaccessibility of arsenic (V) bound to ferrihydrite using a simulated gastrointestinal system. Environ Sci Technol, 2006, 40: 1364-1370.
    • (2006) Environ Sci Technol , vol.40 , pp. 1364-1370
    • Beak, D.G.1    Basta, N.T.2    Scheckel, K.G.3
  • 15
    • 0037366689 scopus 로고    scopus 로고
    • Arsenic removal by zero-valent iron: Field, laboratory and modeling studies
    • Nikolaidis N P, Dobbs G M, Lackovic J A. Arsenic removal by zero-valent iron: Field, laboratory and modeling studies. Water Res, 2003, 37: 1417-1425.
    • (2003) Water Res , vol.37 , pp. 1417-1425
    • Nikolaidis, N.P.1    Dobbs, G.M.2    Lackovic, J.A.3
  • 16
    • 0035890744 scopus 로고    scopus 로고
    • Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride
    • Su C M, Puls R W. Arsenate and arsenite removal by zerovalent iron: Effects of phosphate, silicate, carbonate, borate, sulfate, chromate, molybdate, and nitrate, relative to chloride. Environ Sci Technol, 2001, 35: 4562-4568.
    • (2001) Environ Sci Technol , vol.35 , pp. 4562-4568
    • Su, C.M.1    Puls, R.W.2
  • 17
    • 0035298746 scopus 로고    scopus 로고
    • Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation
    • Su C M, Puls R W. Arsenate and arsenite removal by zerovalent iron: Kinetics, redox transformation, and implications for in situ groundwater remediation. Environ Sci Technol, 2001, 35: 1487-1492.
    • (2001) Environ Sci Technol , vol.35 , pp. 1487-1492
    • Su, C.M.1    Puls, R.W.2
  • 18
    • 0031016409 scopus 로고    scopus 로고
    • Arsenate and chromate retention mechanisms on goethite. 1. Surface structure
    • Fendorf S, Eick M J, Grossl P, et al. Arsenate and chromate retention mechanisms on goethite. 1. Surface structure. Environ Sci Technol, 1997, 31: 315-320.
    • (1997) Environ Sci Technol , vol.31 , pp. 315-320
    • Fendorf, S.1    Eick, M.J.2    Grossl, P.3
  • 19
    • 27444446307 scopus 로고    scopus 로고
    • Synthesis, properties, and applications of iron nanoparticles
    • Huber D L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1: 482-501.
    • (2005) Small , vol.1 , pp. 482-501
    • Huber, D.L.1
  • 20
    • 27744490773 scopus 로고    scopus 로고
    • Arsenate remediation using nanosized modified zerovalent iron particles
    • Jegadeesan G, Mondal K, Lalvani S B. Arsenate remediation using nanosized modified zerovalent iron particles. Environ Prog, 2005, 24: 289-296.
    • (2005) Environ Prog , vol.24 , pp. 289-296
    • Jegadeesan, G.1    Mondal, K.2    Lalvani, S.B.3
  • 21
    • 0041375359 scopus 로고    scopus 로고
    • Nanoscale iron particles for environmental remediation: An overview
    • Zhang W X. Nanoscale iron particles for environmental remediation: An overview. J Nanopart Res, 2003, 5: 323-332.
    • (2003) J Nanopart Res , vol.5 , pp. 323-332
    • Zhang, W.X.1
  • 22
    • 16244404313 scopus 로고    scopus 로고
    • A new method to produce nanoscale iron for nitrate removal
    • Chen S S, Hsu H D, Li C W. A new method to produce nanoscale iron for nitrate removal. J Nanopart Res, 2004, 6: 639-647.
    • (2004) J Nanopart Res , vol.6 , pp. 639-647
    • Chen, S.S.1    Hsu, H.D.2    Li, C.W.3
  • 23
    • 1842627746 scopus 로고    scopus 로고
    • Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron
    • Joo S H, Feitz A J, Waite T D. Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environ Sci Technol, 2004, 38: 2242-2247.
    • (2004) Environ Sci Technol , vol.38 , pp. 2242-2247
    • Joo, S.H.1    Feitz, A.J.2    Waite, T.D.3
  • 24
    • 14644429774 scopus 로고    scopus 로고
    • Chemical reduction of nitrate by nanosized iron: Kinetics and pathways
    • Yang G C C, Lee H L. Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Res, 2005, 39: 884-894.
    • (2005) Water Res , vol.39 , pp. 884-894
    • Yang, G.C.C.1    Lee, H.L.2
  • 25
    • 24644447347 scopus 로고    scopus 로고
    • Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: Role of Donnan membrane effect
    • Cumbal L, Sengupta A K. Arsenic removal using polymer-supported hydrated iron (III) oxide nanoparticles: Role of Donnan membrane effect. Environ Sci Technol, 2005, 39: 6508-6515.
    • (2005) Environ Sci Technol , vol.39 , pp. 6508-6515
    • Cumbal, L.1    Sengupta, A.K.2
  • 26
    • 33645219301 scopus 로고    scopus 로고
    • Arsenic (V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material
    • Kanel S R, Greneche J M, Choi H. Arsenic (V) removal kom groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol, 2006, 40: 2045-2050.
    • (2006) Environ Sci Technol , vol.40 , pp. 2045-2050
    • Kanel, S.R.1    Greneche, J.M.2    Choi, H.3
  • 27
    • 18344362135 scopus 로고    scopus 로고
    • Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water
    • He F, Zhao D Y. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol, 2005, 39: 3314.
    • (2005) Environ Sci Technol , vol.39 , pp. 3314
    • He, F.1    Zhao, D.Y.2
  • 28
    • 0035093220 scopus 로고    scopus 로고
    • Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants
    • Ponder S M, Darab J G, Bucher J, et al. Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater, 2001, 13: 479.
    • (2001) Chem Mater , vol.13 , pp. 479
    • Ponder, S.M.1    Darab, J.G.2    Bucher, J.3
  • 29
    • 0242666859 scopus 로고    scopus 로고
    • Completely green synthesis and stabilization of metal nanoparticles
    • Raveendran P, Fu J, Wallen S L. Completely green synthesis and stabilization of metal nanoparticles. J Am Chem Soc, 2003, 125: 13940-13941.
    • (2003) J Am Chem Soc , vol.125 , pp. 13940-13941
    • Raveendran, P.1    Fu, J.2    Wallen, S.L.3
  • 30
    • 34548580379 scopus 로고    scopus 로고
    • Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers
    • He F, Zhao D. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol, 2007, 41: 6216-6221.
    • (2007) Environ Sci Technol , vol.41 , pp. 6216-6221
    • He, F.1    Zhao, D.2
  • 31
    • 33846688509 scopus 로고    scopus 로고
    • Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater
    • He F, Zhao D, Liu J, et al. Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res, 2007, 46: 29.
    • (2007) Ind Eng Chem Res , vol.46 , pp. 29
    • He, F.1    Zhao, D.2    Liu, J.3
  • 32
    • 0033229956 scopus 로고    scopus 로고
    • Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment
    • Ruby M V, Schoof R, Brattin W, et al. Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol, 1999, 33: 3697-3705.
    • (1999) Environ Sci Technol , vol.33 , pp. 3697-3705
    • Ruby, M.V.1    Schoof, R.2    Brattin, W.3
  • 33
    • 0034326615 scopus 로고    scopus 로고
    • Treatment of arseniccontaminated soils. I: Soil characterization
    • Akhter H, Cartledge F K, Miller J, et al. Treatment of arseniccontaminated soils. I: Soil characterization. J Environ Eng-ASCE, 2000, 126: 999-1003.
    • (2000) J Environ Eng-ASCE , vol.126 , pp. 999-1003
    • Akhter, H.1    Cartledge, F.K.2    Miller, J.3
  • 34
    • 22344457776 scopus 로고    scopus 로고
    • Arsenic leachability in water treatment adsorbents
    • Jing C Y, Liu S Q, Patel M, et al. Arsenic leachability in water treatment adsorbents. Environ Sci Technol, 2005, 39: 5481-5487.
    • (2005) Environ Sci Technol , vol.39 , pp. 5481-5487
    • Jing, C.Y.1    Liu, S.Q.2    Patel, M.3
  • 35
    • 0034326498 scopus 로고    scopus 로고
    • Treatment of arsenic-contaminated soils. II: Treatability study and remediation
    • Miller J, Akhter H, Cartledge F K, et al. Treatment of arsenic-contaminated soils. II: Treatability study and remediation. J Environ Eng-ASCE, 2000, 126: 1004-1012.
    • (2000) J Environ Eng-ASCE , vol.126 , pp. 1004-1012
    • Miller, J.1    Akhter, H.2    Cartledge, F.K.3
  • 36
    • 0036840049 scopus 로고    scopus 로고
    • Adsorption, sequestration, and bioaccessibility of As(V) in soils
    • Yang J K, Barnett M O, Jardine P M, et al. Adsorption, sequestration, and bioaccessibility of As(V) in soils. Environ Sci Technol, 2002, 36: 4562-4569.
    • (2002) Environ Sci Technol , vol.36 , pp. 4562-4569
    • Yang, J.K.1    Barnett, M.O.2    Jardine, P.M.3
  • 37
    • 4444255736 scopus 로고    scopus 로고
    • Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes
    • Si S, Kotal A, Mandal T K, et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Chem Mater, 2004, 16: 3489-3496.
    • (2004) Chem Mater , vol.16 , pp. 3489-3496
    • Si, S.1    Kotal, A.2    Mandal, T.K.3
  • 39
    • 3142692560 scopus 로고    scopus 로고
    • Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice
    • Xu W, Akins D L. Reverse micellar synthesis of CdS nanoparticles and self-assembly into a superlattice. Mater Lett, 2004, 58: 2623.
    • (2004) Mater Lett , vol.58 , pp. 2623
    • Xu, W.1    Akins, D.L.2
  • 40
    • 70649090276 scopus 로고    scopus 로고
    • Immobilization of mercury in sediment by stabilized iron sulfide (FeS) nanoparticles
    • Xiong Z, He F, Zhao D, et al. Immobilization of mercury in sediment by stabilized iron sulfide (FeS) nanoparticles. Water Res, 2009, 43: 5171.
    • (2009) Water Res , vol.43 , pp. 5171
    • Xiong, Z.1    He, F.2    Zhao, D.3
  • 41
    • 25144467978 scopus 로고    scopus 로고
    • Adsorption, oxidation, and bioaccessibility of As (III) in soils
    • Yang J K, Barnett M O, Zhuang J, et al. Adsorption, oxidation, and bioaccessibility of As (III) in soils. Environ Sci Technol, 2005, 39: 7100-7108.
    • (2005) Environ Sci Technol , vol.39 , pp. 7100-7108
    • Yang, J.K.1    Barnett, M.O.2    Zhuang, J.3
  • 42
    • 34547197355 scopus 로고    scopus 로고
    • Decreasing Arsenic Bioaccessibility with Iron Amendments
    • Auburn: Auburn University
    • Subacz J L. Decreasing Arsenic Bioaccessibility with Iron Amendments. Doctor Dissertation. Auburn: Auburn University, 2004.
    • (2004) Doctor Dissertation
    • Subacz, J.L.1
  • 43
    • 24344502761 scopus 로고    scopus 로고
    • Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms
    • Waychunas G A, Kim C S, Banfield J F. Nanoparticulate iron oxide minerals in soils and sediments: Unique properties and contaminant scavenging mechanisms. J Nanopart Res, 2005, 7: 409-433.
    • (2005) J Nanopart Res , vol.7 , pp. 409-433
    • Waychunas, G.A.1    Kim, C.S.2    Banfield, J.F.3
  • 44
    • 0037832486 scopus 로고    scopus 로고
    • Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater
    • Gao Y, Mucci A. Individual and competitive adsorption of phosphate and arsenate on goethite in artificial seawater. Chem Geol, 2003, 199: 91-109.
    • (2003) Chem Geol , vol.199 , pp. 91-109
    • Gao, Y.1    Mucci, A.2
  • 46
    • 14644419639 scopus 로고    scopus 로고
    • Chemical reactions between arsenic and zero-valent iron in water
    • Bang S, Johnson M D, Korfiatis G P, et al. Chemical reactions between arsenic and zero-valent iron in water. Water Res, 2005, 39: 763.
    • (2005) Water Res , vol.39 , pp. 763
    • Bang, S.1    Johnson, M.D.2    Korfiatis, G.P.3
  • 47
    • 3042808849 scopus 로고    scopus 로고
    • Arsenite retention mechanisms within estuarine sediments of Pescadero, CA
    • Bostick B C, Chen C, Fendorf S. Arsenite retention mechanisms within estuarine sediments of Pescadero, CA. Environ Sci Technol, 2004, 38: 3299-3304.
    • (2004) Environ Sci Technol , vol.38 , pp. 3299-3304
    • Bostick, B.C.1    Chen, C.2    Fendorf, S.3
  • 48
    • 0037371539 scopus 로고    scopus 로고
    • Arsenite sorption on troilite (FeS) and pyrite (FeS2)
    • Bostick B C, Fendorf S. Arsenite sorption on troilite (FeS) and pyrite (FeS2). Geochim Cosmochim Acta, 2003, 67: 909-921.
    • (2003) Geochim Cosmochim Acta , vol.67 , pp. 909-921
    • Bostick, B.C.1    Fendorf, S.2
  • 49
    • 67349161446 scopus 로고    scopus 로고
    • Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling
    • He F, Zhang M, Qian T, et al. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: Column experiments and modeling. J Colloid Interface Sci, 2009, 334: 96-102.
    • (2009) J Colloid Interface Sci , vol.334 , pp. 96-102
    • He, F.1    Zhang, M.2    Qian, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.