-
1
-
-
31344477235
-
The dependence of numerically simulated cyclic meso-cyclogenesis upon environmental vertical wind shear
-
Adlerman, E. and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic meso-cyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 3595-3623.
-
(2005)
Mon. Wea. Rev
, vol.133
, pp. 3595-3623
-
-
Adlerman, E.1
Droegemeier, K.K.2
-
2
-
-
0032739549
-
A numerical simulation of cyclic mesocyclogenesis
-
Alderman, E. J., K. K. Droegemeier, and R. P. Davies-Jones, 1999: A numerical simulation of cyclic mesocyclogenesis. Journal of Atmospheric Science, 56, 2045-2069.
-
(1999)
Journal of Atmospheric Science
, vol.56
, pp. 2045-2069
-
-
Alderman, E.J.1
Droegemeier, K.K.2
Davies-Jones, R.P.3
-
3
-
-
0002802198
-
Tornado detection by pulsed doppler radar
-
Brown, R. A., L. R. Lemon, and D. W. Burgess, 1978: Tornado detection by pulsed doppler radar. Monthly Weather Review, 106, 29-38.
-
(1978)
Monthly Weather Review
, vol.106
, pp. 29-38
-
-
Brown, R.A.1
Lemon, L.R.2
Burgess, D.W.3
-
4
-
-
0020290353
-
Mesocyclone evolution statistics
-
Amer. Meteor. Soc, San Antonio, TX
-
Burgess, D. W., V. T. Wood, and R. A. Brown, 1982: Mesocyclone evolution statistics. Preprints, 10th Conf. on Severe Local Storms, Amer. Meteor. Soc, San Antonio, TX, 84-89.
-
(1982)
Preprints, 10th Conf. on Severe Local Storms
, pp. 84-89
-
-
Burgess, D.W.1
Wood, V.T.2
Brown, R.A.3
-
5
-
-
0002959094
-
Test of helicity as a tornado forecast parameter
-
Amer. Meteor. Soc, Kananaskis Park, AB, Canada
-
Davies-Jones, R., D. Burgess, and M. Foster, 1990: Test of helicity as a tornado forecast parameter. Preprints, 16th Conference on Severe Local Storms, Amer. Meteor. Soc, Kananaskis Park, AB, Canada, 588-592.
-
(1990)
Preprints, 16th Conference on Severe Local Storms
, pp. 588-592
-
-
Davies-Jones, R.1
Burgess, D.2
Foster, M.3
-
6
-
-
0030649484
-
Solving the multiple-instance problem with axis-parallel rectangles
-
Dietterich, T. G., R. H. Lathrop, and T. Lozano-Perez, 1997: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89, 31-71.
-
(1997)
Artificial Intelligence
, vol.89
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Perez, T.3
-
7
-
-
0031269184
-
On the optimal-ity of the simple bayesian classifier under zero-one loss
-
Domingos, P. and M. Pazzani, 1997: On the optimal-ity of the simple bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
-
(1997)
Machine Learning
, vol.29
, pp. 103-130
-
-
Domingos, P.1
Pazzani, M.2
-
8
-
-
0014826682
-
Vortex signature recognition by a doppler radar
-
Donaldson, J. R., Jr., 1970: Vortex signature recognition by a doppler radar. Journal of Applied Meteorology, 9, 661-670.
-
(1970)
Journal of Applied Meteorology
, vol.9
, pp. 661-670
-
-
Donaldson Jr., J.R.1
-
9
-
-
0027580356
-
Very simple classification rules perform well on most commonly used datasets
-
Holte, R., 1993: Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
-
(1993)
Machine Learning
, vol.11
, pp. 63-90
-
-
Holte, R.1
-
10
-
-
0032453673
-
The storm cell identification and tracking algorithm: An enhanced wsr-88d algorithm
-
Johnson, J. T., P. L. Mackeen, A. Witt, E. D. Mitchell, G. J. Stumpf, M. D. Eilts, and K. W. Thomas, 1998: The storm cell identification and tracking algorithm: An enhanced wsr-88d algorithm. Weather and Forecasting, 13, 263-276.
-
(1998)
Weather and Forecasting
, vol.13
, pp. 263-276
-
-
Johnson, J.T.1
Mackeen, P.L.2
Witt, A.3
Mitchell, E.D.4
Stumpf, G.J.5
Eilts, M.D.6
Thomas, K.W.7
-
11
-
-
34548547034
-
HOT SAX: Efficiently finding the most unusual time series subsequence
-
Houston, Texas
-
Keogh, E., J. Lin, and A. Fu, 2005: HOT SAX: Efficiently finding the most unusual time series subsequence. Proc. of the 5th IEEE International Conference on Data Mining (ICDM 2005), Houston, Texas, 226-233.
-
(2005)
Proc. of the 5th IEEE International Conference on Data Mining (ICDM 2005)
, pp. 226-233
-
-
Keogh, E.1
Lin, J.2
Fu, A.3
-
12
-
-
34948879874
-
The Warning Decision Support System - Integrated Information (WDSS-II)
-
in press
-
Lakshmanan, V., T. Smith, G. J. Stumpf, and K. Hondl, 2006: The Warning Decision Support System - Integrated Information (WDSS-II). Weather and Forecasting, in press.
-
(2006)
Weather and Forecasting
-
-
Lakshmanan, V.1
Smith, T.2
Stumpf, G.J.3
Hondl, K.4
-
13
-
-
33745781710
-
A symbolic representation of time series, with implications for streaming algorithms
-
Lin, J., E. Keogh, S. Lonardi, and B. Chiu, 2003: A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery.
-
(2003)
Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery
-
-
Lin, J.1
Keogh, E.2
Lonardi, S.3
Chiu, B.4
-
14
-
-
75649110646
-
Chi-squared: A simpler evaluation function for multiple-instance learning
-
McGovern, A. and D. Jensen, 2006: Chi-squared: A simpler evaluation function for multiple-instance learning. Under Review.
-
(2006)
Under Review
-
-
McGovern, A.1
Jensen, D.2
-
15
-
-
75649131725
-
Open problem: Dynamic relational models for improved hazardous weather prediction
-
McGovern, A., A. Kruger, D. Rosendahl, and K. Droegemeier, 2006: Open problem: Dynamic relational models for improved hazardous weather prediction, Presented at the ICML Workshop on Open Problems in Statistical Relational Learning.
-
(2006)
Presented at the ICML Workshop on Open Problems in Statistical Relational Learning
-
-
McGovern, A.1
Kruger, A.2
Rosendahl, D.3
Droegemeier, K.4
-
16
-
-
30044438524
-
Distributed collaborative adaptive sensing (DCAS) for improved detection, understanding, and prediction of atmospheric hazards
-
Amer. Meteor. Soc, San Diego, CA
-
McLaughlin, D. J., V. Chandrasekar, K. Droege-meier, S. Frasier, J. Kurose, F. Junyent, B. Philips, S. Cruz-Pol, and J. Colom, 2005: Distributed collaborative adaptive sensing (DCAS) for improved detection, understanding, and prediction of atmospheric hazards. 9th Symp. Integrated Obs. As-sim. Systems - Atmos. Oceans, Land Surface (IOAS-AOLS), Amer. Meteor. Soc, San Diego, CA.
-
(2005)
9th Symp. Integrated Obs. As-sim. Systems - Atmos. Oceans, Land Surface (IOAS-AOLS)
-
-
McLaughlin, D.J.1
Chandrasekar, V.2
Droege-meier, K.3
Frasier, S.4
Kurose, J.5
Junyent, F.6
Philips, B.7
Cruz-Pol, S.8
Colom, J.9
-
17
-
-
0032454197
-
The National Severe Storms Laboratory tornado detection algorithm
-
Mitchell, E. D., S. V. Vasiloff, G. J. Stumpf, A. Witt, M. D. Eilts, J. Johnson, and K. W. Thomas, 1998: The National Severe Storms Laboratory tornado detection algorithm. Weather and Forecasting, 13, 352-366.
-
(1998)
Weather and Forecasting
, vol.13
, pp. 352-366
-
-
Mitchell, E.D.1
Vasiloff, S.V.2
Stumpf, G.J.3
Witt, A.4
Eilts, M.D.5
Johnson, J.6
Thomas, K.W.7
-
19
-
-
0036243859
-
Weather impacts, forecasts, and policy
-
Pielke, R. and R. Carbone, 2002: Weather impacts, forecasts, and policy. Bulletin of the American Meteorological Society, 83, 393-403.
-
(2002)
Bulletin of the American Meteorological Society
, vol.83
, pp. 393-403
-
-
Pielke, R.1
Carbone, R.2
-
20
-
-
0019700781
-
The morphology of several tor-nadic storms on 20 May 1977
-
Ray, P., B. Johnson, K. Johnson, J. Bradberry, J. Stephens, K. Wagner, R. Wilhelmson, and J. Klemp, 1981: The morphology of several tor-nadic storms on 20 May 1977. J. Atmos. Sci, 38, 1643-1663.
-
(1981)
J. Atmos. Sci
, vol.38
, pp. 1643-1663
-
-
Ray, P.1
Johnson, B.2
Johnson, K.3
Bradberry, J.4
Stephens, J.5
Wagner, K.6
Wilhelmson, R.7
Klemp, J.8
-
21
-
-
0037806811
-
The boosting approach to machine learning: An overview
-
D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, eds, Springer
-
Schapire, R. E., 2003: The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification, D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, eds., Springer.
-
(2003)
Nonlinear Estimation and Classification
-
-
Schapire, R.E.1
-
22
-
-
23144440962
-
WSR-88D radar, tornado warnings, and tornado casualties
-
Simmons, K. M. and D. Sutter, 2005: WSR-88D radar, tornado warnings, and tornado casualties. Weather and Forecasting, 20, 301-310.
-
(2005)
Weather and Forecasting
, vol.20
, pp. 301-310
-
-
Simmons, K.M.1
Sutter, D.2
-
23
-
-
0032464230
-
The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D
-
Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Weather and Forecasting, 13, 304-326.
-
(1998)
Weather and Forecasting
, vol.13
, pp. 304-326
-
-
Stumpf, G.J.1
Witt, A.2
Mitchell, E.D.3
Spencer, P.L.4
Johnson, J.5
Eilts, M.D.6
Thomas, K.W.7
Burgess, D.W.8
-
24
-
-
24144494208
-
Ensemble kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments
-
Tong, M. and M. Xue, 2005: Ensemble kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807.
-
(2005)
Mon. Wea. Rev
, vol.133
, pp. 1789-1807
-
-
Tong, M.1
Xue, M.2
-
25
-
-
0020434898
-
The dependence of numerically simulated convective storms on vertical wind shear and buoyancy
-
Weisman, M. and J. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Monthly Weather Review, 110, 504-520.
-
(1982)
Monthly Weather Review
, vol.110
, pp. 504-520
-
-
Weisman, M.1
Klemp, J.2
-
26
-
-
0001279588
-
Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes
-
Wood, V. T. and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Weather and Forecasting, 12, 928-938.
-
(1997)
Weather and Forecasting
, vol.12
, pp. 928-938
-
-
Wood, V.T.1
Brown, R.A.2
-
27
-
-
0034345482
-
The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification
-
Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorology and Atmospheric Physics, 75, 161-193.
-
(2000)
Meteorology and Atmospheric Physics
, vol.75
, pp. 161-193
-
-
Xue, M.1
Droegemeier, K.K.2
Wong, V.3
-
28
-
-
0035532521
-
The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications
-
Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D. Wang, 2001: The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteorology and Atmospheric Physics, 76, 134-165.
-
(2001)
Meteorology and Atmospheric Physics
, vol.76
, pp. 134-165
-
-
Xue, M.1
Droegemeier, K.K.2
Wong, V.3
Shapiro, A.4
Brewster, K.5
Carr, F.6
Weber, D.7
Liu, Y.8
Wang, D.9
-
29
-
-
0344898900
-
The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation
-
Xue, M., D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorology and Atmospheric Physics, 82, 139-170.
-
(2003)
Meteorology and Atmospheric Physics
, vol.82
, pp. 139-170
-
-
Xue, M.1
Wang, D.2
Gao, J.3
Brewster, K.4
Droegemeier, K.K.5
-
30
-
-
0034826102
-
Spade: An efficient algorithm for mining frequent sequences
-
special issue on unsupervised learning
-
Zaki, M. J., 2001: Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42, 31-60, special issue on unsupervised learning.
-
(2001)
Machine Learning
, vol.42
, pp. 31-60
-
-
Zaki, M.J.1
|