메뉴 건너뛰기




Volumn , Issue , 2007, Pages

Anticipating the formation of tornadoes through data mining

Author keywords

[No Author keywords available]

Indexed keywords


EID: 77949287059     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (3)

References (30)
  • 1
    • 31344477235 scopus 로고    scopus 로고
    • The dependence of numerically simulated cyclic meso-cyclogenesis upon environmental vertical wind shear
    • Adlerman, E. and K. K. Droegemeier, 2005: The dependence of numerically simulated cyclic meso-cyclogenesis upon environmental vertical wind shear. Mon. Wea. Rev., 133, 3595-3623.
    • (2005) Mon. Wea. Rev , vol.133 , pp. 3595-3623
    • Adlerman, E.1    Droegemeier, K.K.2
  • 6
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple-instance problem with axis-parallel rectangles
    • Dietterich, T. G., R. H. Lathrop, and T. Lozano-Perez, 1997: Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelligence, 89, 31-71.
    • (1997) Artificial Intelligence , vol.89 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 7
    • 0031269184 scopus 로고    scopus 로고
    • On the optimal-ity of the simple bayesian classifier under zero-one loss
    • Domingos, P. and M. Pazzani, 1997: On the optimal-ity of the simple bayesian classifier under zero-one loss. Machine Learning, 29, 103-130.
    • (1997) Machine Learning , vol.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 8
    • 0014826682 scopus 로고
    • Vortex signature recognition by a doppler radar
    • Donaldson, J. R., Jr., 1970: Vortex signature recognition by a doppler radar. Journal of Applied Meteorology, 9, 661-670.
    • (1970) Journal of Applied Meteorology , vol.9 , pp. 661-670
    • Donaldson Jr., J.R.1
  • 9
    • 0027580356 scopus 로고
    • Very simple classification rules perform well on most commonly used datasets
    • Holte, R., 1993: Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11, 63-90.
    • (1993) Machine Learning , vol.11 , pp. 63-90
    • Holte, R.1
  • 12
  • 14
    • 75649110646 scopus 로고    scopus 로고
    • Chi-squared: A simpler evaluation function for multiple-instance learning
    • McGovern, A. and D. Jensen, 2006: Chi-squared: A simpler evaluation function for multiple-instance learning. Under Review.
    • (2006) Under Review
    • McGovern, A.1    Jensen, D.2
  • 21
    • 0037806811 scopus 로고    scopus 로고
    • The boosting approach to machine learning: An overview
    • D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, eds, Springer
    • Schapire, R. E., 2003: The boosting approach to machine learning: An overview. Nonlinear Estimation and Classification, D. D. Denison, M. H. Hansen, C. Holmes, B. Mallick, and B. Yu, eds., Springer.
    • (2003) Nonlinear Estimation and Classification
    • Schapire, R.E.1
  • 22
    • 23144440962 scopus 로고    scopus 로고
    • WSR-88D radar, tornado warnings, and tornado casualties
    • Simmons, K. M. and D. Sutter, 2005: WSR-88D radar, tornado warnings, and tornado casualties. Weather and Forecasting, 20, 301-310.
    • (2005) Weather and Forecasting , vol.20 , pp. 301-310
    • Simmons, K.M.1    Sutter, D.2
  • 24
    • 24144494208 scopus 로고    scopus 로고
    • Ensemble kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments
    • Tong, M. and M. Xue, 2005: Ensemble kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807.
    • (2005) Mon. Wea. Rev , vol.133 , pp. 1789-1807
    • Tong, M.1    Xue, M.2
  • 25
    • 0020434898 scopus 로고
    • The dependence of numerically simulated convective storms on vertical wind shear and buoyancy
    • Weisman, M. and J. Klemp, 1982: The dependence of numerically simulated convective storms on vertical wind shear and buoyancy. Monthly Weather Review, 110, 504-520.
    • (1982) Monthly Weather Review , vol.110 , pp. 504-520
    • Weisman, M.1    Klemp, J.2
  • 26
    • 0001279588 scopus 로고    scopus 로고
    • Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes
    • Wood, V. T. and R. A. Brown, 1997: Effects of radar sampling on single-Doppler velocity signatures of mesocyclones and tornadoes. Weather and Forecasting, 12, 928-938.
    • (1997) Weather and Forecasting , vol.12 , pp. 928-938
    • Wood, V.T.1    Brown, R.A.2
  • 27
    • 0034345482 scopus 로고    scopus 로고
    • The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification
    • Xue, M., K. K. Droegemeier, and V. Wong, 2000: The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction model. Part I: Model dynamics and verification. Meteorology and Atmospheric Physics, 75, 161-193.
    • (2000) Meteorology and Atmospheric Physics , vol.75 , pp. 161-193
    • Xue, M.1    Droegemeier, K.K.2    Wong, V.3
  • 28
    • 0035532521 scopus 로고    scopus 로고
    • The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications
    • Xue, M., K. K. Droegemeier, V. Wong, A. Shapiro, K. Brewster, F. Carr, D. Weber, Y. Liu, and D. Wang, 2001: The Advanced Regional Prediction System (ARPS) - a multiscale nonhydrostatic atmospheric simulation and prediction tool. Part II: Model physics and applications. Meteorology and Atmospheric Physics, 76, 134-165.
    • (2001) Meteorology and Atmospheric Physics , vol.76 , pp. 134-165
    • Xue, M.1    Droegemeier, K.K.2    Wong, V.3    Shapiro, A.4    Brewster, K.5    Carr, F.6    Weber, D.7    Liu, Y.8    Wang, D.9
  • 29
    • 0344898900 scopus 로고    scopus 로고
    • The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation
    • Xue, M., D. Wang, J. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteorology and Atmospheric Physics, 82, 139-170.
    • (2003) Meteorology and Atmospheric Physics , vol.82 , pp. 139-170
    • Xue, M.1    Wang, D.2    Gao, J.3    Brewster, K.4    Droegemeier, K.K.5
  • 30
    • 0034826102 scopus 로고    scopus 로고
    • Spade: An efficient algorithm for mining frequent sequences
    • special issue on unsupervised learning
    • Zaki, M. J., 2001: Spade: An efficient algorithm for mining frequent sequences. Machine Learning, 42, 31-60, special issue on unsupervised learning.
    • (2001) Machine Learning , vol.42 , pp. 31-60
    • Zaki, M.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.