메뉴 건너뛰기




Volumn 34, Issue 1, 2010, Pages 91-94

Comparison of wavelet and short time Fourier Transform methods in the analysis of EMG signals

Author keywords

EMG; STFT; Wavelet

Indexed keywords

ARTICLE; COMPUTER ANALYSIS; COMPUTER PROGRAM; CONTROLLED STUDY; DATA ANALYSIS; DIAGNOSTIC VALUE; ELECTROMYOGRAPHY; FOURIER TRANSFORMATION; INTERMETHOD COMPARISON; SIGNAL PROCESSING; SPECTRAL SENSITIVITY; STATISTICAL ANALYSIS;

EID: 77949265003     PISSN: 01485598     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10916-008-9219-8     Document Type: Article
Times cited : (97)

References (8)
  • 1
    • 34247201494 scopus 로고    scopus 로고
    • Wavelet de-noising of electromyography
    • DOI 10.1109/ICMA.2006.257406, 4026321, 2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006
    • Z. Qingju Z. Luo 2006 Wavelet de-noising of electromyography Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation 25 1553 1558 10.1109/ICMA.2006.257406 (Pubitemid 46604543)
    • (2006) 2006 IEEE International Conference on Mechatronics and Automation, ICMA 2006 , vol.2006 , pp. 1553-1558
    • Zhang, Q.1    Luo, Z.2
  • 2
    • 77949273139 scopus 로고    scopus 로고
    • EMG signal classification using wavelet transform and fuzzy clustering algorithms
    • Bursa, Turkey
    • Koçyiǧit, Y., Korürek, M. (2003). EMG signal classification using wavelet transform and fuzzy clustering algorithms. Proc. of ELECO'2003, Bursa, Turkey, 381-383.
    • (2003) Proc. of ELECO'2003 , pp. 381-383
    • Koçyiǧit, Y.1
  • 4
    • 16844376435 scopus 로고    scopus 로고
    • Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application
    • DOI 10.1016/j.compbiomed.2004.05.001
    • M. KIymIk İ. Güler A. Dizibüyük M. AkIn 2005 Comparison of STFT and wavelet transform methods in determining epileptic seizure activity in EEG signals for real-time application Comput. Biol. Med 35 603 616 10.1016/j.compbiomed.2004.05.001 (Pubitemid 40487489)
    • (2005) Computers in Biology and Medicine , vol.35 , Issue.7 , pp. 603-616
    • Kiymik, M.K.1    Guler, I.2    Dizibuyuk, A.3    Akin, M.4
  • 6
    • 1842429827 scopus 로고    scopus 로고
    • Separation of brain signals using FFT and neural networks
    • Istanbul, Turkey
    • Akin, M., Kiymik, M.K., Arserim, M.A., Turkoglu, I. (2000). Separation of brain signals using FFT and neural networks. Proc. of Biyomut 2000, Istanbul, Turkey, 161-164.
    • (2000) Proc. of Biyomut 2000 , pp. 161-164
    • Akin, M.1    Kiymik, M.K.2    Arserim, M.A.3    Turkoglu, I.4
  • 7
    • 34047185483 scopus 로고    scopus 로고
    • The use of the wavelet transform in EMG M-wave pattern classification
    • J. Salvador H. Bruin 2006 The use of the wavelet transform in EMG M-wave pattern classification Proc. IEEE Eng. Med. Biol. Soc 1 2304 2307
    • (2006) Proc. IEEE Eng. Med. Biol. Soc , vol.1 , pp. 2304-2307
    • Salvador, J.1    Bruin, H.2
  • 8
    • 33750940946 scopus 로고    scopus 로고
    • Noise reduction based on ICA decomposition and wavelet transform for the extraction of motor unit action potentials
    • DOI 10.1016/j.jneumeth.2006.06.005, PII S0165027006002949
    • X. Ren Z. Yan Z. Wang X. Hu 2006 Noise reduction based on ICA decomposition and wavelet transform for the extraction of motor unit action potentials J. Neurosci. Methods 158 313 322 10.1016/j.jneumeth.2006.06.005 (Pubitemid 44738083)
    • (2006) Journal of Neuroscience Methods , vol.158 , Issue.2 , pp. 313-322
    • Ren, X.1    Yan, Z.2    Wang, Z.3    Hu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.