-
1
-
-
0001074848
-
Tail index estimation and an exponential regression model
-
Beirlant, J., Dierckx, G., Goegebeur, Y., Matthys, G. (1999). Tail index estimation and an exponential regression model. Extremes 2:177-200.
-
(1999)
Extremes
, vol.2
, pp. 177-200
-
-
Beirlant, J.1
Dierckx, G.2
Goegebeur, Y.3
Matthys, G.4
-
2
-
-
2642550931
-
On exponential representations of log-spacings of extreme order statistics
-
Beirlant, J., Dierckx, G., Guillou, A., Starica, C. (2002). On exponential representations of log-spacings of extreme order statistics. Extremes 5(2):157-180.
-
(2002)
Extremes
, vol.5
, Issue.2
, pp. 157-180
-
-
Beirlant, J.1
Dierckx, G.2
Guillou, A.3
Starica, C.4
-
3
-
-
0036988120
-
A class of asymptotically unbiased semi-parametric estimators of the tail index
-
Caeiro, F., Gomes, M. I. (2002). A class of asymptotically unbiased semi-parametric estimators of the tail index. Test 11(2):345-364.
-
(2002)
Test
, vol.11
, Issue.2
, pp. 345-364
-
-
Caeiro, F.1
Gomes, M.I.2
-
4
-
-
34147125324
-
A new class of estimators of the "scale" second order parameter
-
Caeiro, F., Gomes, M. I. (2006). A new class of estimators of the "scale" second order parameter. Extremes 9:193-211.
-
(2006)
Extremes
, vol.9
, pp. 193-211
-
-
Caeiro, F.1
Gomes, M.I.2
-
5
-
-
58149488505
-
Minimum-variance reduced-bias tail index and quantile estimation
-
Caeiro, F., Gomes, M. I. (2008). Minimum-variance reduced-bias tail index and quantile estimation. Revstat 6(1):1-20.
-
(2008)
Revstat
, vol.6
, Issue.1
, pp. 1-20
-
-
Caeiro, F.1
Gomes, M.I.2
-
6
-
-
33947287640
-
Direct reduction of bias of the classical Hill estimator
-
Caeiro, F., Gomes, M. I., Pestana, D. D. (2005). Direct reduction of bias of the classical Hill estimator. Revstat 3(2):111-136.
-
(2005)
Revstat
, vol.3
, Issue.2
, pp. 111-136
-
-
Caeiro, F.1
Gomes, M.I.2
Pestana, D.D.3
-
7
-
-
0032484340
-
A general class of estimators of the tail index
-
Drees, H. (1998). A general class of estimators of the tail index. J. Statist. Plann. Infer. 98: 95-112.
-
(1998)
J. Statist. Plann. Infer.
, vol.98
, pp. 95-112
-
-
Drees, H.1
-
8
-
-
0033424571
-
Estimating a tail exponent by modelling departure from a Pareto distribution
-
Feuerverger, A., Hall, P. (1999). Estimating a tail exponent by modelling departure from a Pareto distribution. Ann. Statist. 27:760-781.
-
(1999)
Ann. Statist.
, vol.27
, pp. 760-781
-
-
Feuerverger, A.1
Hall, P.2
-
9
-
-
10244233506
-
A new class of semi-parametric estimators of the second order parameter
-
Fraga Alves, M. I., Gomes, M. I., De Haan, L. (2003). A new class of semi-parametric estimators of the second order parameter. Portugaliae Mathematica 60(1):193-213.
-
(2003)
Portugaliae Mathematica
, vol.60
, Issue.1
, pp. 193-213
-
-
Fraga Alves, M.I.1
Gomes, M.I.2
De Haan, L.3
-
10
-
-
67349213977
-
Mixed moment estimator and location invariant alternatives
-
(accepted). DOI: 10.1007/s10687-008-0073-3
-
Fraga Alves, M. I., Gomes, M. I., de Haan, L., Neves, C. (2007). Mixed moment estimator and location invariant alternatives. Notas e Comunicações CEAUL 14/2007 Extremes (accepted). DOI: 10.1007/s10687-008-0073-3.
-
(2007)
Notas e Comunicações CEAUL 14/2007 Extremes
-
-
Fraga Alves, M.I.1
Gomes, M.I.2
De Haan, L.3
Neves, C.4
-
11
-
-
0003326493
-
Regular variation, extensions and Tauberian theorems
-
Center for Mathematics and Computer Science, Amsterdam
-
Geluk, J., de Haan, L. (1987). Regular variation, extensions and Tauberian theorems. CWI Tract 40, Center for Mathematics and Computer Science, Amsterdam.
-
(1987)
CWI Tract 40
-
-
Geluk, J.1
De Haan, L.2
-
12
-
-
0000866457
-
Generalizations of the Hill estimator-asymptotic versus finite sample behavior
-
Gomes, M. I., Martins, M. J. (2001). Generalizations of the Hill estimator-asymptotic versus finite sample behavior. J. Statist. Plann. Infer. 93:161-180.
-
(2001)
J. Statist. Plann. Infer.
, vol.93
, pp. 161-180
-
-
Gomes, M.I.1
Martins, M.J.2
-
13
-
-
33845663439
-
"Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter
-
Gomes, M. I., Martins, M. J. (2002). "Asymptotically unbiased" estimators of the tail index based on external estimation of the second order parameter. Extremes 5(1):5-31.
-
(2002)
Extremes
, vol.5
, Issue.1
, pp. 5-31
-
-
Gomes, M.I.1
Martins, M.J.2
-
14
-
-
3042543711
-
Bias reduction and explicit estimation of the tail index
-
Gomes, M. I., Martins, M. J. (2004). Bias reduction and explicit estimation of the tail index. J. Statist. Plann. Infer. 124:361-378.
-
(2004)
J. Statist. Plann. Infer.
, vol.124
, pp. 361-378
-
-
Gomes, M.I.1
Martins, M.J.2
-
15
-
-
34249049511
-
A simple second order reduced-bias tail index estimator
-
Gomes, M. I., Pestana, D. D. (2007a). A simple second order reduced-bias tail index estimator. J. Statist. Comp. Simul. 77(6):487-504.
-
(2007)
J. Statist. Comp. Simul.
, vol.77
, Issue.6
, pp. 487-504
-
-
Gomes, M.I.1
Pestana, D.D.2
-
16
-
-
33947256203
-
A sturdy reduced bias extreme quantile (VaR) estimator
-
Gomes, M. I., Pestana, D. D. (2007b). A sturdy reduced bias extreme quantile (VaR) estimator. J. Amer. Statist. Assoc. 102(477):280-292.
-
(2007)
J. Amer. Statist. Assoc.
, vol.102
, Issue.477
, pp. 280-292
-
-
Gomes, M.I.1
Pestana, D.D.2
-
17
-
-
40749088539
-
Asymptotic comparison of the mixed moment and classical extreme value index estimators
-
Gomes, M. I., Neves, C. (2008). Asymptotic comparison of the mixed moment and classical extreme value index estimators. Statist. Probab. Lett. 78(6):643-653.
-
(2008)
Statist. Probab. Lett.
, vol.78
, Issue.6
, pp. 643-653
-
-
Gomes, M.I.1
Neves, C.2
-
18
-
-
0002639503
-
Alternatives to a semi-parametric estimator of parameters of rare events-the Jackknife methodology
-
Gomes, M. I., Martins, M. J., Neves, M. M. (2000). Alternatives to a semi-parametric estimator of parameters of rare events-the Jackknife methodology. Extremes 3(3):207-229.
-
(2000)
Extremes
, vol.3
, Issue.3
, pp. 207-229
-
-
Gomes, M.I.1
Martins, M.J.2
Neves, M.M.3
-
19
-
-
10244241162
-
Semi-parametric estimation of the second order parameter-asymptotic and finite sample behavior
-
Gomes, M. I., De Haan, L., Peng, L. (2002a). Semi-parametric estimation of the second order parameter-asymptotic and finite sample behavior. Extremes 5(4):387-414.
-
(2002)
Extremes
, vol.5
, Issue.4
, pp. 387-414
-
-
Gomes, M.I.1
De Haan, L.2
Peng, L.3
-
20
-
-
3042643552
-
Generalized Jackknife semi-parametric estimators of the tail index
-
Gomes, M. I., Martins, M. J., Neves, M. M. (2002b). Generalized Jackknife semi-parametric estimators of the tail index. Portugaliae Mathematica 59(4):393-408.
-
(2002)
Portugaliae Mathematica
, vol.59
, Issue.4
, pp. 393-408
-
-
Gomes, M.I.1
Martins, M.J.2
Neves, M.M.3
-
21
-
-
10244232943
-
Bias reduction of a tail index estimator trough an external estimation of the second order parameter
-
Gomes, M. I., Caeiro, F., Figueiredo, F. (2004). Bias reduction of a tail index estimator trough an external estimation of the second order parameter. Statistics 38(6):497-510.
-
(2004)
Statistics
, vol.38
, Issue.6
, pp. 497-510
-
-
Gomes, M.I.1
Caeiro, F.2
Figueiredo, F.3
-
22
-
-
21644487570
-
Asymptotically best linear unbiased tail estimators under a second order regular variation condition
-
Gomes, M. I., Figueiredo, F., Mendonça, S. (2005a). Asymptotically best linear unbiased tail estimators under a second order regular variation condition. J. Statist. Plann. Infer. 134(2):409-433.
-
(2005)
J. Statist. Plann. Infer.
, vol.134
, Issue.2
, pp. 409-433
-
-
Gomes, M.I.1
Figueiredo, F.2
Mendonça, S.3
-
23
-
-
17044389845
-
Revisiting the role of the Jackknife methodology in the estimation of a positive tail index
-
Gomes, M. I., Pereira, H., Miranda, C. (2005b). Revisiting the role of the Jackknife methodology in the estimation of a positive tail index. Commun. Statist. Theor. Meth. 34:1-20.
-
(2005)
Commun. Statist. Theor. Meth.
, vol.34
, pp. 1-20
-
-
Gomes, M.I.1
Pereira, H.2
Miranda, C.3
-
24
-
-
39449112523
-
Improving second order reduced-bias tail index estimation
-
Gomes, M. I., Martins, M. J., Neves, M. M. (2007a). Improving second order reduced-bias tail index estimation. Revstat 5(2):177-207.
-
(2007)
Revstat
, vol.5
, Issue.2
, pp. 177-207
-
-
Gomes, M.I.1
Martins, M.J.2
Neves, M.M.3
-
25
-
-
34247599297
-
Reduced-bias tail index estimation and the Jackknife methodology
-
Gomes, M. I., Miranda, C., Viseu, C. (2007b). Reduced-bias tail index estimation and the Jackknife methodology. Statistica Neerlandica 61(2):243-270.
-
(2007)
Statistica Neerlandica
, vol.61
, Issue.2
, pp. 243-270
-
-
Gomes, M.I.1
Miranda, C.2
Viseu, C.3
-
26
-
-
37849040464
-
Tail Index estimation for heavytailed models: Accommodation of bias in weighted log-excesses
-
Gomes, M. I., de Haan, L., Henriques Rodrigues, L. (2008). Tail Index estimation for heavytailed models: accommodation of bias in weighted log-excesses. J. Roy. Statist. Soc. B70(Issue 1):31-52.
-
(2008)
J. Roy. Statist. Soc. B
, vol.70
, Issue.1
, pp. 31-52
-
-
Gomes, M.I.1
De Haan, L.2
Henriques Rodrigues, L.3
-
27
-
-
58149485450
-
A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator
-
Gomes, M. I., Pestana, D. D., Caeiro, F. (2009). A note on the asymptotic variance at optimal levels of a bias-corrected Hill estimator. Statist. Probab. Lett. 79:295-303.
-
(2009)
Statist. Probab. Lett.
, vol.79
, pp. 295-303
-
-
Gomes, M.I.1
Pestana, D.D.2
Caeiro, F.3
-
28
-
-
0001263124
-
A simple general approach to inference about the tail of a distribution
-
Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution. Ann. Statist. 3:1163-1174.
-
(1975)
Ann. Statist.
, vol.3
, pp. 1163-1174
-
-
Hill, B.M.1
-
29
-
-
0032087519
-
Asymptotically unbiased estimator for the extreme-value index
-
Peng, L. (1998). Asymptotically unbiased estimator for the extreme-value index. Statist. Probab. Lett. 38(2):107-115.
-
(1998)
Statist. Probab. Lett.
, vol.38
, Issue.2
, pp. 107-115
-
-
Peng, L.1
-
30
-
-
3042734524
-
Estimating the first and second order parameters of a heavy tailed distribution
-
Peng, L., Qi, Y. (2004). Estimating the first and second order parameters of a heavy tailed distribution. Austral. NZ. J. Statist. 46:305-312.
-
(2004)
Austral. NZ. J. Statist.
, vol.46
, pp. 305-312
-
-
Peng, L.1
Qi, Y.2
|