메뉴 건너뛰기




Volumn 10, Issue 10, 2009, Pages 1127-1150

New insights into the structural features and functional relevance of human cytochrome P450 2C9. Part II

Author keywords

Active site; CYP2C9; Drug development; Inhibitor; Polymorphism; Structure activity relationship; Substrate

Indexed keywords

BACTERIAL ENZYME; BENZOPHENONE; CYTOCHROME P450 2C9; DAPSONE; FLURBIPROFEN; HEME; KETOPROFEN; LANSOPRAZOLE; NORMEPHENYTOIN; OXYGEN; PHENOBARBITAL; PHENYTOIN; SULFADIAZINE; SULFADIMIDINE; SULFAMETHOXAZOLE; SULFONE DERIVATIVE; WARFARIN; CYP2C9 PROTEIN, HUMAN; DRUG; UNSPECIFIC MONOOXYGENASE;

EID: 77649243147     PISSN: 13892002     EISSN: None     Source Type: Journal    
DOI: 10.2174/138920009790820101     Document Type: Article
Times cited : (8)

References (2)
  • 1
    • 0030053733 scopus 로고    scopus 로고
    • Three-dimensional quantitative structure-activity relationship for inhibitors of cytochrome P4502C9
    • Jones, J.P.; He, M.; Trager, W.F.; Rettie, A.E. Three-dimensional quantitative structure-activity relationship for inhibitors of cytochrome P4502C9. Drug Metab. Dispos., 1996, 24(1), 1-6.
    • (1996) Drug Metab. Dispos , vol.24 , Issue.1 , pp. 1-6
    • Jones, J.P.1    He, M.2    Trager, W.F.3    Rettie, A.E.4
  • 2
    • 0027397054 scopus 로고    scopus 로고
    • Korzekwa, K.R, Jones, J.P. Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics, 1993, 3(1, 1-18, 3] Haining, R.L, Jones, J.P, Henne, K.R, Fisher, M.B, Koop, D.R, Trager, W.F, Rettie, A.E. Enzymatic determinants of the substrate specificity of CYP2C9: role of B'-C loop residues in providing the π-stacking anchor site for warfarin binding. Biochemistry (Mosc, 1999, 38(11, 3285-3292, 4] He, M, Korzekwa, K.R, Jones, J.P, Rettie, A.E, Trager, W.F. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch. Biochem. Biophys, 1999, 372(1, 16-28, 5] Rao, S, Aoyama, R, Schrag, M, Trager, W.F, Rettie, A, Jones, J.P. A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J. Med. Chem, 2000, 4315, 2789-2796, 6] Locuson, C.W, 2nd; Rock, D.A, Jones, J.P. Quantitati
    • Korzekwa, K.R.; Jones, J.P. Predicting the cytochrome P450 mediated metabolism of xenobiotics. Pharmacogenetics, 1993, 3(1), 1-18. [3] Haining, R.L.; Jones, J.P.; Henne, K.R.; Fisher, M.B.; Koop, D.R.; Trager, W.F.; Rettie, A.E. Enzymatic determinants of the substrate specificity of CYP2C9: role of B'-C loop residues in providing the π-stacking anchor site for warfarin binding. Biochemistry (Mosc), 1999, 38(11), 3285-3292. [4] He, M.; Korzekwa, K.R.; Jones, J.P.; Rettie, A.E.; Trager, W.F. Structural forms of phenprocoumon and warfarin that are metabolized at the active site of CYP2C9. Arch. Biochem. Biophys., 1999, 372(1), 16-28. [5] Rao, S.; Aoyama, R.; Schrag, M.; Trager, W.F.; Rettie, A.; Jones, J.P. A refined 3-dimensional QSAR of cytochrome P450 2C9: computational predictions of drug interactions. J. Med. Chem., 2000, 43(15), 2789-2796. [6] Locuson, C.W., 2nd; Rock, D.A.; Jones, J.P. Quantitative binding models for CYP2C9 based on benzbromarone analogues. Biochemistry (Mosc), 2004, 43(22), 6948-6958. [7] Suzuki, H.; Kneller, M.B.; Rock, D.A.; Jones, J.P.; Trager, W.F.; Rettie, A.E. Active-site characteristics of CYP2C19 and CYP2C9 probed with hydantoin and barbiturate inhibitors. Arch. Biochem. Biophys., 2004, 429(1), 1-15. [8] Hansch, C.; Dunn, W.J., 3rd. Linear relationships between lipophilic character and biological activity of drugs. J. Pharm. Sci., 1972, 61(1), 1-19. [9] Lewis, D.F.; Lake, B.G.; Ito, Y.; Dickins, M. Lipophilicity relationships in inhibitors of CYP2C9 and CYP2C19 enzymes. J. Enzyme Inhib. Med. Chem., 2006, 21(4), 385-389. [10] Lewis, D.F. Three-dimensional models of human and other mammalian microsomal P450s constructed from an alignment with P450102 (P450bm3). Xenobiotica, 1995, 25(4), 333-366. [11] Wiseman, H.; Lewis, D.F. The metabolism of tamoxifen by human cytochromes P450 is rationalized by molecular modelling of the enzyme-substrate interactions: potential importance to its proposed anti-carcinogenic/carcinogenic actions. Carcinogenesis, 1996, 17(6), 1357-1360. [12] Richardson, T.H.; Johnson, E.F. Alterations of the regiospecificity of progesterone metabolism by the mutagenesis of two key amino acid residues in rabbit cytochrome P450 2C3v. J. Biol. Chem., 1994, 269(39), 23937-23943. [13] Lewis, D.F.; Dickins, M.; Weaver, R.J.; Eddershaw, P.J.; Goldfarb, P.S.; Tarbit, M.H. Molecular modelling of human CYP2C subfamily enzymes CYP2C9 and CYP2C19: rationalization of substrate specificity and site-directed mutagenesis experiments in the CYP2C subfamily. Xenobiotica, 1998, 28(3), 235-268. [14] Haines, D.C.; Tomchick, D.R.; Machius, M.; Peterson, J.A. Pivotal role of water in the mechanism of P450BM-3. Biochemistry (Mosc), 2001, 40(45), 13456-13465. [15] Payne, V.A.; Chang, Y.T.; Loew, G.H. Homology modeling and substrate binding study of human CYP2C9 enzyme. Proteins, 1999, 37(2), 176-190. [16] Flanagan, J.U.; McLaughlin, L.A.; Paine, M.J.; Sutcliffe, M.J.; Roberts, G.C.; Wolf, C.R. Role of conserved Asp293 of cytochrome P450 2C9 in substrate recognition and catalytic activity. Biochem. J., 2003, 370(Pt 3), 921-926. [17] Tsao, C.C.; Wester, M.R.; Ghanayem, B.; Coulter, S.J.; Chanas, B.; Johnson, E.F.; Goldstein, J.A. Identification of human CYP2C19 residues that confer S-mephenytoin 4′-hydroxylation activity to CYP2C9. Biochemistry (Mosc), 2001, 40(7), 1937-1944. [18] Afzelius, L.; Zamora, I.; Ridderstrom, M.; Andersson, T.B.; Karlen, A.; Masimirembwa, C.M. Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and threedimensional quantitative structure-activity relationship analysis. Mol. Pharmacol., 2001, 59(4), 909-919. [19] Ridderstrom, M.; Zamora, I.; Fjellstrom, O.; Andersson, T.B. Analysis of selective regions in the active sites of human cytochromes P450, 2C8, 2C9, 2C18, and 2C19 homology models using GRID/CPCA. J. Med. Chem., 2001, 44(24), 4072-4081. [20] de Groot, M.J.; Alex, A.A.; Jones, B.C. Development of a combined protein and pharmacophore model for cytochrome P450 2C9. J. Med. Chem., 2002, 45(10), 1983-1993. [21] Lewis, D.F.; Dickins, M.; Lake, B.G.; Goldfarb, P.S. Investigation of enzyme selectivity in the human CYP2C subfamily: homology modelling of CYP2C8, CYP2C9 and CYP2C19 from the CYP2C5 crystallographic template. Drug Metab. Drug Interact., 2003, 19(4), 257-285. [22] Zamora, I.; Afzelius, L.; Cruciani, G. Predicting drug metabolism: a site of metabolism prediction tool applied to the cytochrome P450 2C9. J. Med. Chem., 2003, 46(12), 2313-2324. [23] Gotoh, O. Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J. Biol. Chem., 1992, 267(1), 83-90. [24] Veronese, M.E.; Doecke, C.J.; Mackenzie, P.I.; McManus, M.E.; Miners, J.O.; Rees, D.L.; Gasser, R.; Meyer, U.A.; Birkett, D.J. Site-directed mutation studies of human liver cytochrome P450 isoenzymes in the CYP2C subfamily. Biochem. J., 1993, 289(Pt 2), 533-538. [25]


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.